APPLICATIONS ET FONCTIONS

- * Exercice proche du cours ** Exercice de difficulté normale *** Exercice difficile (voire très difficile)
- *1) Soit f l'application de \mathbb{R} dans \mathbb{R} qui à x associe $x^2 + 3x + 2$. Déterminez si f est injective, surjective ou bijective. Déterminez son image Im f
- *2) On pose $f: \mathbb{C} \to \mathbb{C}$ définie par $f(z) = z^2 + 3z + i$. f est-elle injective, surjective, bijective?
- *3) Dans chacun des cas suivants, déterminez si f est injective, surjective ou bijective et déterminez son image $\operatorname{Im} f$.
 - a) $f: \mathbb{R}^3 \to \mathbb{R}^2$ définie par f(x, y, z) = (x + 2y z, 2x y + 3z)
 - b) $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie par f(x, y, z) = (x + 2y z, 2x y + 3z, 4x + 3y + z)
 - c) $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie par f(x, y, z) = (x + 2y z, 2x y + 3z, -x + y + z)
 - d) $f: \mathbb{R}^2 \to \mathbb{R}^3$ définie par f(x,y) = (x+2y, 2x-y, 3x-y)
 - e) $f: \mathbb{R}^3 \to \mathbb{R}^4$ définie par $f(x,y,z) = (-2x+y+z,\ x-2y+z,\ x+y-2z,\ x+2y-3z)$
- **4) On pose E l'ensemble des parties finies de \mathbb{N} et φ l'application qui à $A \in E$ associe la somme des éléments de $A: \varphi(A) = \sum_{x \in A} x$. Déterminez si φ est injective, surjective ou bijective.
- **5) On pose $Q = \mathbb{R}^{*2}_+, p: Q \to Q$ définie par $p(a,b) = (\sqrt{a^2 + b^2}, \frac{b}{a})$. Montrez que p est une bijection.
- **6) On pose $g: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $(x, y) \mapsto (x + y, xy)$. Déterminez si g est injective, surjective ou bijective. Déterminez son image.
- **7) On appelle P le plan géométrique. On définit l'application $f: P \to P$: à tout point M d'affixe z, on associe f(M) d'affixe $z^2 2iz 1$.
 - a) f est-elle injective, surjective, bijective?
 - b) Montrez que l'image de la droite (Ox) est une parabole et déterminez l'image de la droite (Oy).
 - c) Déterminez l'image réciproque par f de chacune de ces deux droites.
- **8) On appelle f l'application de \mathbb{N}^2 dans \mathbb{N} qui à (n,m) associe 7n+3m. Déterminez si f est injective, surjective ou bijective. Déterminez $f(\{0\} \times \mathbb{N})$, $f(\mathbb{N} \times \{0\})$. Déterminez l'image réciproque de $2\mathbb{N}$ (ensemble des nombres pairs), $2\mathbb{N} + 1$ (ensemble des nombres impairs). Déterminez l'image de f (on pourra penser à la div. euclidienne par f ou par f ou
- **9) On pose g l'application de $\mathbb{C} \{i\}$ dans \mathbb{C} qui à z associe $\frac{z+i}{z-i}$. Déterminez si g est injective, surjective ou bijective. Déterminez l'image de \mathbb{R} , l'image de $i\mathbb{R} \{i\}$, de $\mathbb{U} \{i\}$.
- **10) On pose $f: \mathbb{N}^2 \to \mathbb{N}$ définie par $f(x,y) = \frac{(x+y)(x+y+1)}{2} + y$. Montrez que f est une bijection.
- **11) On pose E l'ensemble des applications continues de \mathbb{R} dans \mathbb{R} , F celui des applications de classe C^1 de \mathbb{R} dans \mathbb{R} qui s'annulent en 0.

Pour tout $u \in E$, on définit $v: x \mapsto \int_0^x u$.

- a) Montrez qu'on définit ainsi une application $\Phi: E \to F$ en posant $\Phi(u) = v$.
- b) Pour $n \in \mathbb{N}^*$, on pose $X_n : x \mapsto x^n$. Calculez $\Phi(X_n)$.
- c) Montrez que Φ est une bijection.

**12)

- a) Soit E, F, G trois ensembles, $f: E \to F$, $g: F \to G$. Montrez que si $g \circ f$ est injective alors f l'est aussi, et que si $g \circ f$ est surjective alors g l'est aussi.
- b) Soit E, F, G, H 4 ensembles, $f: E \to F, g: F \to G, h: G \to H$. Montrez que $g \circ f$ et $h \circ g$ sont bijectives si et seulement si f, g, h le sont aussi.
- c) Avec les mêmes hypothèses, mais avec E = H, montrez l'équivalence : $f \circ h \circ g$ et $h \circ g \circ f$ injectives et $g \circ f \circ h$ surjective si et seulement si f, g, h sont bijectives.
- **13) Soit E, F deux ensembles, $f: E \to F$, $g: F \to E$, $h: F \to E$. Montrez que si $g \circ f = Id_E$ et $f \circ h = Id_F$, alors f est bijective et que $f^{-1} = g = h$.
- **14) Soit E un ensemble, $f: E \to E$ telle que $f \circ f = f$. Montrez que si f est injective ou surjective, alors $f = Id_E$.
- **15) Soit E un ensemble, $f: E \to E$ telle que $f \circ f \circ f = f$. Montrez que f est injective si et seulement si f est surjective.
- **16) Soit E, F, G trois ensembles, $f: E \to F$ et $g: E \to G$. On définit $h: E \to F \times G$ par h(x) = (f(x), g(x)).
 - a) Montrez que si f ou g est injective, alors h est injective.
 - b) Est-il vrai que si f ou g est surjective, alors h est surjective?
- **17) Soit E, F, G, H quatre ensembles, $f: E \to F, g: G \to H$. On définit $\varphi: E \times G \to F \times H$ par $\varphi(x,y) = (f(x),g(y))$.

Déterminez, s'il y en a, les liens entre l'injectivité (resp. la surjectivité) de f et g avec l'injectivité (resp. la surjectivité) de φ .

**18) Soit E, F deux ensembles, $f: E \to F$.

Montrez que f est injective si et seulement si il existe $g: F \to E$ telle que $g \circ f = Id_E$.

**19) Soit E, F deux ensembles, $f: E \to F$.

Montrez que f est surjective si et seulement si il existe $g: F \to E$ telle que $f \circ g = Id_F$.

- **20) Soit $f: E \to F$ une application, H un ensemble, montrez les équivalences :
 - a) f est injective si et seulement si $\forall (A,B) \in \mathscr{P}(E)^2$ $f(A \cap B) = f(A) \cap f(B)$.
 - b) f est injective si et seulement si $\forall (g,h) \in E^H \ (f \circ g = f \circ h) \to (g = h)$.
 - c) f est surjective si et seulement si $\forall (g,h) \in F^H \ (g \circ f = h \circ f) \to (g = h)$.
- **21) Soit $f: E \to F$ une application.
 - a) Montrez que pour tout $A \in \mathscr{P}(E), A \subset f(f(A))$.
 - b) Montrez l'équivalence : f est injective si et seulement si pour tout $A \in \mathscr{P}(E), A = f(f(A))$.
 - c) Montrez que pour tout $B \in \mathscr{P}(F), f(f(B)) \subset B$.
 - d) Montrez l'équivalence : f est surjective si et seulement si pour tout $B \in \mathscr{P}(F), f(f(B)) = B$.
 - e) Montrez l'équivalence : f est bijective si et seulement si pour tout $A \in \mathscr{P}(E)$, f(E-A) = F f(A).
- **22) Soit E un ensemble, A, B deux parties de E.

On pose $p: \mathscr{P}(E) \to \mathscr{P}(A) \times \mathscr{P}(B)$ l'application définie par : $p(X) = (X \cap A, X \cap B)$.

- a) Montrez que p est injective si et seulement si $E = A \cup B$.
- b) Déterminez une condition nécessaire et suffisante sur (A, B) pour que p soit surjective.
- c) Dans le cas où p est bijective, quelle est la réciproque de p?

**23) Soit E un ensemble.

- a) Montrez qu'il existe une injection de E dans $\mathscr{P}(E)$.
- b) Montrez par l'absurde qu'il n'existe pas de surjection de E dans $\mathscr{P}(E)$ (th. de Cantor) : on pourra considérer l'ensemble $A = \{x \in E \ / \ x \notin f(x)\}.$

Cet exercice prouve donc que $\mathscr{P}(E)$ est beaucoup plus gros que E: si E est infini, alors $\mathscr{P}(E)$ est un ensemble infini plus gros, donc $\mathscr{P}(\mathscr{P}(E))$ est encore plus gros, etc.

**24) Soit $f: E \to F$ une application.

On pose
$$\Phi: \mathscr{P}(F) \to \mathscr{P}(E)$$
 définie par $\Phi(B) = f(B)$.

Montrez que Φ est injective si et seulement si f est surjective et que Φ est surjective si et seulement si f est injective.