FONCTIONS DE \mathbb{R} DANS \mathbb{R} , LIMITES

- * Exercice proche du cours ** Exercice de difficulté normale *** Exercice difficile (voire très difficile)
- **1) Déterminez les applications de \mathbb{R} dans \mathbb{R} qui sont périodiques et qui ont une limite finie en $+\infty$ (on pourra considérer les suites $(f(x+nT))_{n\in\mathbb{N}}$ où T est une période strictement positive de f).
- **2) Soit $f: \mathbb{R} \to \mathbb{R}$ continue en 0 telle que pour tout $x \in \mathbb{R}$, f(2x) = f(x).
 - a) Soit $u \in \mathbb{R}$. Montrez que pour tout $n \in \mathbb{N}$, $f(u) = f\left(\frac{u}{2^n}\right)$.
 - b) Montrez que f est constante.
- **3) Soit f une application de \mathbb{R}_+^* dans \mathbb{R}_+^* qui vérifie :

$$\lim_{x\to +\infty} f(x)=0 \text{ et pour tout } (u,v)\in \mathbb{R}_+^{*2},\, f\Big(u.f(v)\Big)=v.f(u).$$

Soit x > 0, on pose a = xf(x).

- a) Soit $t \in \mathbb{R}_+^*$. Montrez que si f(t) = t, alors $f(t^2) = t^2$.
- b) Montrez que pour tout $n \in \mathbb{N}$, $f\left(a^{2^n}\right) = a^{2^n}$. Montrez par l'absurde que $a \leqslant 1$.
- c) Montrez que pour tout $n \in \mathbb{N}$, $f\left(a^{-2^n}\right) = f(1).a^{-2^n}$. Déduisez-en que $a \geqslant 1$.
- d) Concluez : reconnaissez l'application f.
- **4) Soit $f: \mathbb{R} \to \mathbb{R}$ continue en 0 telle que pour tout $x \in \mathbb{R}$, $f(2x) = f(x) \cos x$.
 - a) Montrez que pour tout $(x,n) \in \mathbb{R} \times \mathbb{N}^*$, $f(x) = f\left(\frac{x}{2^n}\right) \prod_{k=1}^n \cos \frac{x}{2^k}$.
 - b) Pour $(x, n) \in \mathbb{R} \times \mathbb{N}^*$, donnez une expression simple de $\sin \frac{x}{2^n}$. $\prod_{k=1}^n \cos \frac{x}{2^k}$
 - c) Déterminez la fonction f.
- **5) Soit $f: \mathbb{R} \to \mathbb{R}$ continue en 0 et en 1 telle que pour tout $x \in \mathbb{R}$, $f(x^2) = f(x)$. Montrez que f est constante.
- **6) Soit $(a,b) \in \mathbb{R}^2$ tel que $(a,b) \neq (0,0)$. Déterminez les fonctions f continues en 0 qui vérifient $\forall x \in \mathbb{R}$ f(ax) + f(bx) = 0.
- **7) Soit $f: \mathbb{R} \to \mathbb{R}$ telle que pour tout $(x, y) \in \mathbb{R}^2$, $|f(x) f(y)| \leq |\sin x \sin y|$.
 - a) Montrez que f est 2π -périodique.
 - b) Montrez que f est continue sur \mathbb{R} .
 - c) Montrez que f est dérivable en $\frac{\pi}{2}$ et que $f'(\pi/2) = 0$.

**8)

- a) Déterminez les fonctions f continues en 0 telles que pour tout $(x,y) \in \mathbb{R}^2$, f(x+y) = f(x) + f(y).
- b) Faites de même avec les fonctions telles que pour tout $(x,y) \in \mathbb{R}^2$, f(x+y) = f(x)f(y).
- **9) Justifiez que les propositions suivantes sont fausses.
 - a) Toute fonction qui tend vers $+\infty$ en $+\infty$ est croissante au voisinage de $+\infty$.
 - b) Si f est une fonction telle que $|f(x)| \xrightarrow[x \to +\infty]{} +\infty$, alors f a une limite infinie en $+\infty$.
 - c) Toute fonction définie sur un intervalle est monotone au voisinage de tout point.
- **10) Soit f une fonction continue sur \mathbb{R} qui prend la valeur $b \in \mathbb{R}$ et telle que $\lim_{t \to \infty} f = +\infty$. On pose $A = \{x \in \mathbb{R} \ \big/ \ f(x) = b\}$.
 - a) Montrez que A possède une borne supérieure s.
 - b) Montrez qu'en fait s est le maximum de A.
- ***11) Soit $f: \mathbb{R} \to \mathbb{R}$ continue telle que : $\forall x \in \mathbb{R} \quad \exists \alpha > 0 \quad \forall t \in [x, x + \alpha] \quad f(x) \leqslant f(t)$. Montrez que f est croissante sur \mathbb{R} .
- ***12) Soit f définie au voisinage de 0 telle que $\lim_{x\to 0} f(x) = 0$ et $\lim_{x\to 0} \frac{f(2x) f(x)}{x} = 0$.

Montrez que $\lim_{x\to 0} \frac{f(x)}{x} = 0.$

***13) Soit $f: \mathbb{R}_+ \to \mathbb{R}$ une fonction bornée sur tout segment inclus dans \mathbb{R}_+ telle que $\lim_{x \to +\infty} f(x+1) - f(x) = 0$.

Montrez que
$$\lim_{x \to +\infty} \frac{f(x)}{x} = 0.$$

Généralisez : si
$$\lim_{x \to +\infty} f(x+1) - f(x) = \ell \in \mathbb{R}$$
, alors $\lim_{x \to +\infty} \frac{f(x)}{x} = \ell$.