COMPLÉMENTS SUR LES NOMBRES RÉELS

- * Exercice proche du cours ** Exercice de difficulté normale *** Exercice difficile (voire très difficile)
- *1) Donnez l'allure des courbes des fonctions partie entière, $f: x \mapsto x \lfloor x \rfloor$ (partie fractionnaire de x) et $g: x \mapsto f(x)(1-f(x))$.
- *2) Soit $f: x \mapsto 3\lfloor 2x \rfloor 2\lfloor 3x \rfloor$. Justifiez que f est 1-périodique. Montrez que pour tout $x \in \mathbb{R}, -4 \leqslant f(x) \leqslant 3$. Donnez l'allure de la courbe de f. En quels points f n'est-elle pas continue?
- *3) Déterminez la valeur logique (vrai/faux) des propositions suivantes, en justifiant bien sûr.
 - a) Pour tout $(x, n) \in \mathbb{R} \times \mathbb{Z}$, |x + n| = |x| + n.
 - b) Pour tout $(x, y) \in \mathbb{R}^2$, |x + y| = |x| + |y|.
 - c) Pour tout $(x, n) \in \mathbb{R} \times \mathbb{N}$, $\lfloor nx \rfloor = n \lfloor x \rfloor$.
 - d) Pour tout $x \in \mathbb{R}$, |2x| = 2|x| ou |2x| = 2|x| + 1.
 - e) Pour tout $(x,y) \in \mathbb{R}^2$, $\lfloor x \rfloor + \lfloor x + y \rfloor + \lfloor y \rfloor \leqslant \lfloor 2x \rfloor + \lfloor 2y \rfloor$.
 - f) Pour tout $(x,n) \in \mathbb{R} \times \mathbb{N}^*$, $\left| \frac{\lfloor nx \rfloor}{n} \right| = \lfloor x \rfloor$.

**4)

- a) Montrez que pour tout réel x, on a $\left\lfloor \frac{x}{2} \right\rfloor + \left\lfloor \frac{x+1}{2} \right\rfloor = \lfloor x \rfloor$.
- b) Déduisez-en la limite quand n tend vers $+\infty$ de $\sum_{k=0}^n \left\lfloor \frac{p+2^k}{2^{k+1}} \right\rfloor$, où p est un réel fixé.
- c) On pose $u_n = \sum_{k=0}^n \left\lfloor \frac{k}{2} \right\rfloor$. Déterminez une relation simple entre u_{n+2} et u_n et déterminez une expression de u_n en fonction de n.
- **5) Pour $n \in \mathbb{N}$, on pose $u_n = \sum_{k=1}^n \left\lfloor \frac{3k-1}{2} \right\rfloor$.
 - a) Montrez que pour tout $p \in \mathbb{N}$, $u_{2p+2} = u_{2p} + 6p + 3$. Déduisez-en une expression simple de u_{2p} en fonction de p.
 - b) Montrez que pour tout $n \in \mathbb{N}$, $u_n = \frac{3}{4}n^2 + \frac{1 (-1)^n}{8}$.
- **6) Soient $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$. Montrez que $\sum_{k=0}^{n-1} \left\lfloor x + \frac{k}{n} \right\rfloor = \lfloor nx \rfloor$.
- *7) Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$. Déterminez les limites suivantes :
 - a) $\lim_{n \to +\infty} \frac{\lfloor nx \rfloor}{n}$ b) $\lim_{n \to +\infty} \frac{\sum_{k=1}^{n} \lfloor kx \rfloor}{n^2}$ c) $\lim_{n \to +\infty} \frac{\lfloor \sqrt{nx(nx+2)} \rfloor}{n}$ (x étant positif)

*8)

- a) Montrez que pour tout $n \in \mathbb{N}^*$, il existe $(a_n, b_n) \in \mathbb{N}^{*2}$ tel que $(2 + \sqrt{3})^n = a_n + \sqrt{3}b_n$.
- b) Pour $n \in \mathbb{N}^*$, déterminez $(2 \sqrt{3})^n$ en fonction de a_n et b_n .
- c) En remarquant que $0 < 2 \sqrt{3} < 1$, montrez que $\left| (2 + \sqrt{3})^n \right|$ est un nombre impair.
- **9) On veut montrer que pour tout $p \in \mathbb{N}^*$, $\left| \sqrt{p} + \sqrt{p+1} \right| = \left| \sqrt{4p+2} \right|$.

Soit donc $p \in \mathbb{N}^*$ et $k = \left| \sqrt{4p+2} \right|$.

- a) Comparez $\sqrt{p} + \sqrt{p+1}$ et $\sqrt{4p+2}$, déduisez-en que $\left|\sqrt{p} + \sqrt{p+1}\right| \leqslant k$.
- b) On suppose que l'inégalité précédente est stricte. Montrez alors que $4p^2 + 4p < (k^2 2p 1)^2 \le 4p^2 + 4p + 1$. Déduisez-en la valeur de k^2 en fonction de p, puis que k est pair, enfin concluez.

1

- *10)
 - a) Montrez que l'ensemble $\{q^3 \mid q \in \mathbb{Q}\}$ est dense dans \mathbb{R} .
 - b) Montrez que l'ensemble $\left\{\frac{k}{2^n} \mid k \in \mathbb{Z}, n \in \mathbb{N}\right\}$ est dense dans \mathbb{R} .
- **11) Soit x un irrationnel positif et $(p_n), (q_n)$ deux suites d'entiers naturels telles que $\frac{p_n}{q}$ tende vers x quand n tend vers $+\infty$. Montrez que (p_n) et (q_n) divergent vers $+\infty$.
- **12) Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction croissante telle que pour tout $(x,y) \in \mathbb{R}^2$, f(x+y) = f(x) + f(y).
 - a) Montrez que pour tout $(n,t) \in \mathbb{N} \times \mathbb{R}$, on a f(nt) = nf(t).
 - b) Déduisez-en que pour tout $(r,t) \in \mathbb{Q} \times \mathbb{R}$, on a f(rt) = rf(t).
 - c) Montrez qu'il existe $\alpha \in \mathbb{R}$ tel que : $\forall x \in \mathbb{R}$, $f(x) = \alpha x$.
 - d) Et si on remplace l'hypothèse f croissante par f décroissante?
- **13) Soit $n \in \mathbb{N}^*$. Montrez qu'il existe un multiple de 2018 dont l'écriture décimale commence par $\underbrace{111...1}_{n-1}$...
- ***14) Soit $G = \{a + b\sqrt{2} / (a, b) \in \mathbb{Z}^2\}.$
 - a) Montrez que pour tout $n \in \mathbb{N}$, $(\sqrt{2} 1)^n \in G$.
 - b) Montrez que G est dense dans \mathbb{R} .
- ***15) Montrez que l'ensemble $\{\sqrt{n} |\sqrt{n}| / n \in \mathbb{N}\}$ est dense dans [0,1].
- ***16) (Généralisation de l'exercice précédent) Soit u une suite de réels divergente, strictement croissante et positive telle $(u_{n+1}-u_n)$ converge vers 0. Montrez que l'ensemble $\{u_n-\lfloor u_n\rfloor\ /\ n\in\mathbb{N}\}$ est dense dans [0,1].
- **17) Discutez l'existence ou non de maximum, minimum, borne supérieure ou inférieure des parties suivantes de \mathbb{R} , en donnant leurs valeurs en cas d'existence :

a)
$$A = \left\{ \frac{1}{n} / n \in \mathbb{N}^* \right\}$$

b)
$$A = \left\{ (-1)^n + \frac{1}{n} / n \in \mathbb{N}^* \right\}$$

c)
$$A = \left\{ \frac{1 + (-1)^n}{n} / n \in \mathbb{N}^* \right\}$$

d)
$$A = \left\{ \frac{1}{m + \frac{1}{n}} / (m, n) \in \mathbb{N}^{*2} \right\}$$

e)
$$A = \left\{ \frac{1}{m + \frac{1}{n}} / (m, n) \in \mathbb{N} \times \mathbb{N}^* \right\}$$

f)
$$A = \left\{ \frac{p+q^2}{p^2 + 2q^2 + 2} / (p,q) \in \mathbb{N}^{*2} \right\}$$

a)
$$A = \left\{ \frac{1}{n} / n \in \mathbb{N}^* \right\}$$
 b) $A = \left\{ (-1)^n + \frac{1}{n} / n \in \mathbb{N}^* \right\}$ c) $A = \left\{ \frac{1 + (-1)^n}{n} / n \in \mathbb{N}^* \right\}$ d) $A = \left\{ \frac{1}{m + \frac{1}{n}} / (m, n) \in \mathbb{N}^{*2} \right\}$ e) $A = \left\{ \frac{1}{m + \frac{1}{n}} / (m, n) \in \mathbb{N} \times \mathbb{N}^* \right\}$ f) $A = \left\{ \frac{p + q^2}{p^2 + 2q^2 + 2} / (p, q) \in \mathbb{N}^{*2} \right\}$ g) $A = \left\{ \frac{1}{|m - n| + \frac{1}{n}} / (m, n) \in \mathbb{N}^{*2} \right\}$ h) $A = \left\{ \frac{mn}{m^2 + n^2} / (m, n) \in \mathbb{N}^{*2} \right\}$

h)
$$A = \left\{ \frac{mn}{m^2 + n^2} / (m, n) \in \mathbb{N}^{*2} \right\}$$

- *18) Soit u une suite réelle positive. Justifiez que $\ell = \inf_{n \in \mathbb{N}} u_n$ existe. Existe-t-il une sous-suite de u qui converge vers ℓ ?
- **19) Soient A et B deux parties non vides majorées de \mathbb{R} .
 - a) Montrez que : $A \subset B \Longrightarrow \sup(A) \leqslant \sup(B)$.
 - b) On note A+B l'ensemble $\{a+b \mid (a,b) \in A \times B\}$. Montrez que $\sup(A+B) = \sup(A) + \sup(B)$.
 - c) Montrez que $\sup(A \cup B) = \max(\sup(A), \sup(B))$.
 - d) On suppose de plus que A est minorée. On note $D = \{|x y| / (x, y) \in A^2\}$. Montrez que D possède une borne inférieure et une borne supérieure et précisez-les en fonction de celles de A.
- **20) Bornes supérieures de fonctions. Le symbole a désigne un réel strictement positif.
 - a) Montrez que $f_a: x \mapsto \frac{x}{1+ax^2}$ est bornée sur \mathbb{R} et donnez la valeur de $\sup_{\mathbb{R}} |f_a|$.
 - b) Même question avec $f_a: x \mapsto \arctan(x+a) \arctan(a)$.
 - c) Même question avec $f_a: x \mapsto \arctan((x-a)^2) \arctan(a^2)$.
 - d) Même question avec $f_a: x \mapsto \exp(-(x+a)^2) \exp(-a^2)$.
- **21) Montrez qu'une intersection quelconque d'intervalles est un intervalle.
- **22) Soit f une fonction définie sur \mathbb{R} et croissante sur \mathbb{R} .
 - a) Soit $A = \{x \in \mathbb{R} / f(x) = 0\}$. Montrez que A est un intervalle.
 - b) Soit $B = \{x \in \mathbb{R} / 1 \le f(x) < 2\}$. Montrez que B est un intervalle.
 - c) Plus généralement, montrez que si J est un intervalle, alors $I = f^{-1}(J)$ est un intervalle.

***23) Soit $f:[0,1] \to [0,1]$ une fonction croissante. On souhaite montrer que f admet un point fixe. On pose $\Omega = \{x \in [0,1] \ / \ f(x) \le x\}$.

Montrez que $s=\inf\Omega$ existe, puis montrez enfin que s est un point fixe de f.

Ce résultat reste-t-il vrai si on retire l'hypothèse f croissante? même question en remplaçant [0,1] par [0,1[?

***24) Soit u une suite de réels positifs telle que pour tout $(n,p) \in \mathbb{N}^2$, $u_{n+p} \leqslant u_n + u_p$.

Pour $n \in \mathbb{N}^*$, on pose $v_n = \frac{u_n}{n}$ et $v_0 = 0$.

- a) Justifiez l'existence de $\ell = \inf\{v_n \ / \ n \in \mathbb{N}^*\}.$
- b) Montrez que pour tout $(k, p, r) \in \mathbb{N}^{*2} \times \mathbb{N}$, si $r \in [0, p-1]$, alors $\ell \leqslant v_{kp+r} \leqslant v_p + \frac{r}{kp+r}v_r$.
- c) Montrez que la suite v converge vers ℓ .