
Mpi Devoir surveillé 5 - sujet X-ENS

Problème 1 - X 1991 - MP 2

Le but principal de ce problème est d'étudier la somme d'une série entière et de la relier à une expression intégrale. La
partie I est consacrée à des préliminaires.

Il est admis que

∫ +∞

0

e−t2 dt =

√
π

2
.

I. Des sommes de Riemann pour une intégrale généralisée.

On considère une fonction φ dé�nie sur l'intervalle ]0,+∞[, continue, réelle, décroissante, strictement positive.

Q 1. On suppose que φ est intégrable sur ]0,+∞[.

a) Montrer que la série

+∞∑
n=1

hφ(nh) est convergente pour tout h > 0.

b) Déterminer la limite de sa somme lorsque h tend vers 0.

Q 2. On suppose seulement que φ est intégrable sur ]0, 1]. On désigne par E(x) la partie entière d'un réel x et on pose :

s(x) =


0 si x ∈ ]0, 1[
E(x)∑
k=1

φ(k) si x ∈ [1,+∞[

ck =

∫ k

k−1

φ(t) dt− φ(k), pour tout k de N∗

C =

+∞∑
k=1

ck

ψ(x) = s(x)−
∫ x

0

φ(t) dt+ C, pour tout x ≥ 0

a) Démontrer que C existe e�ectivement.

b) Véri�er que, si θ(x) =
ψ(x)

φ(x)
, |θ(x)| ≤ 1 pour x ∈]0,+∞[. On pourra distinguer deux cas selon que x < 1 ou x ≥ 1.

II. Série

+∞∑
n=1

xn√
n
.

On se propose d'étudier la fonction f somme de la série entière :

f(x) =

+∞∑
n=1

xn√
n
.

On pose An =

n∑
k=1

1√
k
, de sorte que l'on a

1√
n
= An −An−1, pour n ≥ 2.

Q 3. Préciser le rayon de convergence de cette série, ainsi que la limite de sa somme lorsque x tend vers 1 par valeurs
inférieures.

Q 4. Montrer que, lorsque x tend vers 1 par valeurs inférieures, f(x) est équivalent à

√
π√

1− x
.

On pourra poser h = − lnx et considérer la fonction φ(t) =
e−t

√
t
.

Q 5. On dé�nit une fonction s sur [0,+∞[ par :

s(y) =


0 si y ∈ [0, 1[
E(y)∑
n=1

1√
n

si y ∈ [1,+∞[
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Véri�er que l'on a

f(x) = h

∫ +∞

0

s(y)e−hy dy

avec, comme plus haut, h = − lnx.

Q 6.

a) Montrer que f(x)−
√
π√

1− x
admet une limite L lorsque x tend vers 1 par valeurs inférieures.

b) Montrer que L = (
√
2 + 1)f(−1).

III. Prolongement analytique de f .

Q 7. Déterminer l'ensemble des valeurs du nombre complexe x pour lesquelles la fonction u 7→ 1

eu2 − x
est intégrable

sur ]0,+∞[. Sur l'ensemble ainsi mis en évidence, on pose :

g(x) =
2x√
π

∫ +∞

0

du

eu2 − x
.

Q 8. Montrer que f et g coïncident sur le disque ouvert |x| < 1. On pourra développer
1

1− xe−u2 .

Q 9. Montrer que g(x) +
2√
π

√
ln |x| tend vers 0 lorsque x est réel et tend vers −∞.

On pourra poser :

x = −et
2

, t ≥ 0, φt(u) =
1

e(u2−t2) + 1
,

puis minorer

∫ +∞

0

φt(u) du par

∫ t−ε

0

φt(u) du, où ε est un nombre réel véri�ant 0 < ε < t, et majorer

∫ +∞

0

φt(u) du

en l'écrivant sous la forme

∫ t

0

φt(u) du+

∫ +∞

t

φt(u) du. En�n, on montrera que

∫ +∞

t

e−u2

du ∼
t→+∞

e−t2

2t
.

IV. Comportement de f sur le cercle-unité.
On suppose maintenant x complexe de module 1, de la forme x = eiθ avec θ ∈]0, 2π[. On pose :

C(θ) = Re(f(x)) =

∞∑
n=1

cosnθ√
n

S(θ) = Im(f(x)) =

∞∑
n=1

sinnθ√
n

.

Q 10. Justi�er ces dé�nitions.

On pourra introduire les sommes sp(θ) =

p∑
n=1

sinnθ et cp(θ) =

p∑
n=1

cosnθ

Q 11.

a) Trouver une constante K telle que :

∀n ≥ 1,

2n∑
k=n+1

1√
k
sin

kπ

4n
≥ K

√
n .

b) La série
∑
n≥1

sinnθ√
n

converge-t-elle uniformément sur l'intervalle [0, 2π] ?

Q 12. Démontrer, en utilisant une méthode analogue à celle de la question Q 8 que f(eiθ) = g(eiθ) pour θ ∈]0, 2π[. En
déduire que

C(θ) =
2√
π

∫ ∞

0

Wθ(u) du

où on a posé :

Wα(u) =
eu

2

cos θ − 1

e2u2 − 2eu2 cos θ + 1
.

Q 13. On �xe θ dans ]0,
π

2
[. Déterminer les zéros de Wθ, et de sa derivée, le sens de variations de Wθ, sa valeur en 0 et

sa limite lorsque u tend vers +∞. Donner une esquisse de la courbe représentative.

Q 14. Déterminer la limite de C(θ) lorsque θ tend vers 0 par valeurs positives.
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Devoir surveillé 5 - sujet X-ENS - Corrigé

Problème 1

I.

Q 1.

a) Soit n ∈ N∗ et h > 0. Par décroissance de φ, pour tout t ∈ ](n − 1)h, nh], φ(nh) ⩽ φ(t), donc par croissance de

l'intégrale, (nh− (n− 1)h)φ(nh) ⩽
∫ nh

(n−1)h

φ(t) dt ⩽ (nh− (n− 1)h)φ((n− 1)h),

i.e. hφ(nh) ⩽
∫ nh

(n−1)h

φ(t) dt.

Pour N ∈ N∗, on additionne de 1 à N : h

N∑
n=1

φ(nh) ⩽
∫ Nh

0

φ(t) dt ⩽
∫ +∞

0

φ(t) dt (car φ est positive et intégrable

sur ]0,+∞[).

La suite des sommes partielles de la série à termes positifs
∑

hφ(nh) est donc majorée, donc cette série converge.

b) L'inégalité précédente donne par passage à la limite quand N → +∞ :

+∞∑
n=1

hφ(nh) ⩽
∫ +∞

0

φ(t) dt.

Mais on a aussi une autre inégalité :

pour tout n ⩾ 2 et t ∈ [(n−1)h, nh], φ(t) ⩽ φ((n−1)h) donc

∫ nh

(n−1)h

φ(t) dt ⩽ hφ((n−1)h), donc en additionnant :∫ +∞

h

φ(t) dt ⩽
+∞∑
n=1

hφ(nh).

Donc on a l'encadrement :

∫ +∞

h

φ(t) dt ⩽
+∞∑
n=1

hφ(nh) ⩽
∫ +∞

0

φ(t) dt.

Or lim
h→0

∫ +∞

h

φ(t) dt =

∫ +∞

0

φ(t) dt puisque φ est intégrable sur ]0,+∞[, donc par encadrement

lim
h→0

h

+∞∑
n=1

φ(nh) =

∫ +∞

0

φ(t) dt

Q 2.

a) Par décroissance de φ sur ]0,+∞[, pour tout k ⩾ 2, φ(k) ⩽
∫ k

k−1

φ ⩽ φ(k − 1), donc 0 ⩽ ck ⩽ φ(k − 1)− φ(k).

Comme φ est décroissante et positive, elle a une limite �nie ℓ ⩾ 0 en +∞ (th. de la limite monotone). Donc la suite

(φ(k))k⩾1 a une limite réelle, donc sa série di�érence associée
∑
k⩾2

φ(k − 1)− φ(k) est convergente.

Donc par comparaison de séries à termes positifs, la série
∑

ck converge. De plus, on a alors 0 ⩽
+∞∑
k=2

ck ⩽ φ(1)− ℓ,

donc 0 ⩽ c1 ⩽ C ⩽ c1 + φ(1)− ℓ =

∫ 1

0

φ− ℓ.

Dans toute la suite, on pose C ′ =

+∞∑
k=2

ck = C − c1, de sorte que 0 ⩽ C ′ ⩽ φ(1)− ℓ.

b) On commence par le cas x < 1 :

ψ(x) = −
∫ x

0

φ(t) dt+ C = −
∫ x

0

φ(t) dt+

∫ 1

0

φ(t) dt− φ(1) + C ′ =

∫ 1

x

φ(t) dt− φ(1) + C ′

or par décroissance de φ, on a (1− x)φ(1) ⩽
∫ 1

x

φ(t) dt ⩽ (1− x)φ(x), de plus C ′ ⩾ 0 et ℓ ⩾ 0,

donc ψ(x) ⩽
∫ 1

x

φ(t) dt− ℓ ⩽
∫ 1

x

φ(t) dt ⩽ (1− x)φ(x) ⩽ φ(x)
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et −φ(x) ⩽ −φ(1) ⩽ −xφ(1) ⩽ (1− x)φ(1)− φ(1) + C ′ ⩽ ψ(x),

donc �nalement, −φ(x) ⩽ ψ(x) ⩽ φ(x), ce qui revient à |θ(x)| ⩽ 1.

Puis dans le cas x ⩾ 1 : on pose n = E(x) de sorte que n ⩽ x ⩽ n+ 1,

donc ψ(x) =

n∑
k=1

φ(k)−
∫ x

0

φ(t) dt+ C =

n∑
k=1

φ(k)−
∫ x

0

φ(t) dt+

+∞∑
k=n+2

ck +

n+1∑
k=1

(∫ k

k−1

φ(t) dt− φ(k)

)

donc ψ(x) = −
∫ x

0

φ(t) dt+

+∞∑
k=n+2

ck +

∫ n+1

0

φ(t) dt− φ(n+ 1) =

∫ n+1

x

φ(t) dt− φ(n+ 1) +

+∞∑
k=n+2

ck

or

+∞∑
k=n+2

ck ⩽
+∞∑

k=n+2

φ(k − 1)− φ(k) = φ(n+ 1)− ℓ

donc ψ(x) ⩽
∫ n+1

x

φ(t) dt− ℓ ⩽
∫ n+1

x

φ(t) dt ⩽ (n+ 1− x)φ(x) ⩽ φ(x)

et −φ(x) ⩽ −φ(n+ 1) ⩽ (n− x)φ(n+ 1) = (n+ 1− x)φ(n+ 1)− φ(n+ 1) ⩽
∫ n+1

x

φ(t) dt− φ(n+ 1) ⩽ ψ(x)

donc �nalement, −φ(x) ⩽ ψ(x) ⩽ φ(x), ce qui revient à |θ(x)| ⩽ 1.

II.

Q 3. D'après la règle de d'Alembert, le rayon de convergence est 1.

Pour x ∈ [0, 1[, f(x) est la somme d'une série à termes positifs, donc pour tout N ⩾ 1, f(x) ⩾
N∑

n=1

xn√
n
.

De plus, comme toutes les fonctions x 7→ xn√
n

sont croissantes sur [0, 1[, f l'est aussi donc elle a une limite

L ∈ R ∪ {+∞} en 1 par valeurs inférieures.

Donc par passage à la limite quand x→ 1, on obtient : pour tout N ⩾ 1, L ⩾
N∑

n=1

1√
n
. Mais comme la série

∑ 1√
n

est à termes positifs et diverge, ses sommes partielles ont pour limite +∞ quand N → +∞. Donc il vient L ⩾ +∞,
i.e. L = +∞.

Q 4. La fonction φ : t 7→ e−t

√
t
véri�e les conditions de la question Q 1 donc lim

h→0
h

+∞∑
n=1

φ(nh) =

∫ +∞

0

φ(t) dt.

Par changement de variable t = u2 (bijectif de ]0,+∞[ dans lui-même et C1),

∫ +∞

0

φ(t) dt = 2

∫ +∞

0

e−u2

du =
√
π.

Donc lim
h→0

h

+∞∑
n=1

xn√
nh

= lim
h→0

√
h

+∞∑
n=1

xn√
n

=
√
π, i.e. lim

x→1−

√
− lnxf(x) =

√
π. Or lnx ∼

x→1
x − 1, donc il vient

√
1− xf(x) ∼

x→1

√
π.

Q 5. D'abord, on note que pour tout y > 0, 0 ⩽ s(y) ⩽ E(y) (somme de termes tous plus petits que 1) donc 0 ⩽
s(y)e−hy ⩽ ye−hy, donc y 7→ s(y)e−hy est intégrable sur ]0,+∞[.

Ensuite, h

∫ +∞

0

s(y)e−hy dy = h

+∞∑
n=0

∫ n+1

n

s(y)e−hy dy = h

+∞∑
n=0

∫ n+1

n

s(n)e−hy dy = h

+∞∑
n=0

An

∫ n+1

n

e−hy dy

= h

+∞∑
n=0

An

[
e−hy

−h

]n+1

y=n

=

+∞∑
n=0

Ane
−ny(1 − e−y) = (1 − e−y)

+∞∑
n=0

n∑
k=1

1√
k
e−ny = (1 − e−y)

+∞∑
k=1

+∞∑
n=k

1√
k
e−ny (par th.

de Fubini sur une famille de réels positifs)

= (1− e−y)

+∞∑
k=1

(
1√
k

+∞∑
n=k

e−ny

)
= (1− e−y)

+∞∑
k=1

(
1√
k

e−ky

1− e−y

)
=

+∞∑
k=1

(
1√
k
e−ky

)
= f(x).

Q 6.

a) Cette fois-ci, on prend φ : t 7→ 1√
t
qui véri�e les conditions de la question Q 2. Avec les mêmes notations, on a

montré que pour tout x > 0, |ψ(x)| ⩽ φ(x).
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Donc

∣∣∣∣h∫ +∞

0

(s(y) + C − 2
√
y)e−hy

∣∣∣∣ ⩽ h

∫ +∞

0

|s(y) + C − 2
√
y| e−hy ⩽ h

∫ +∞

0

φ(y)e−hy =
√
πh (par changement

de variable hy = u2)

autrement dit

∣∣∣∣f(x) + C − 2h

∫ +∞

0

√
ye−hy dy

∣∣∣∣ ⩽ √
π
√
− lnx.

Par intégration par parties (licite, je ne détaille pas), 2h

∫ +∞

0

√
ye−hy dy =

√
π√
h
=

√
π√

− lnx
.

Or lim
x→1−

√
− lnx = 0 donc par th. d'encadrement, lim

x→1−
f(x)−

√
π√

− lnx
= −C.

Il reste à étudier ∆(x) =

√
π√

− lnx
−

√
π√

1− x
=

√
π

1− x+ lnx√
1− x

√
− lnx(

√
1− x+

√
− lnx)

.

Le dénominateur est équivalent à 2(1 − x)3/2 et le numérateur à
−1

2
(1 − x)2 (d.l. de ln(1 + t) en 0 à l'ordre 2).

Donc ∆(x) −−−−→
x→1−

0, d'où lim
x→1−

f(x)−
√
π√

1− x
= −C.

b) L = −C =

+∞∑
k=1

(
1√
k
− 2(

√
k −

√
k − 1)

)
= lim

n→+∞
An − 2

√
n. On pose Bn = An − 2

√
n.

On pose Sn =

n∑
k=1

(−1)k√
k

pour n ∈ N∗.

S2n =
2n∑
k=1

(−1)k√
k

=
n∑

k=1

1√
2k

−
n∑

k=1

1√
2k − 1

en séparant les termes d'indices pair et impairs.

S2n =
1√
2

n∑
k=1

1√
k
−

n∑
k=1

1√
2k − 1

=
1√
2

n∑
k=1

1√
k
−

(
2n∑
k=1

1√
k
−

n∑
k=1

1√
2k

)
=

2√
2

n∑
k=1

1√
k
−

2n∑
k=1

1√
k

donc S2n =
√
2An−A2n =

√
2Bn−B2n −−−−−→

n→+∞

√
2L−L = (

√
2−1)L, donc f(−1) = (

√
2−1)L, i.e. L = (

√
2+1)L.

III.

Q 7. On ne sait intégrer que des fonctions continues par morceaux ! Donc pour que u 7→ 1

eu2 − x
soit intégrable sur

]0,+∞[, il faut déjà qu'elle soit continue par morceaux, donc dé�nie sur ]0,+∞[.

Or quand u décrit ]0,+∞[, eu
2

décrit ]1,+∞[, donc pour que u 7→ 1

eu2 − x
soit dé�nie sur ]0,+∞[, il faut que

x ̸∈ ]1,+∞[.

Ensuite, si x = 1, u 7→ 1

eu2 − x
est continue sur ]0,+∞[ et

1

eu2 − 1
∼

u→0

1

u2
, donc u 7→ 1

eu2 − x
n'est pas intégrable

sur ]0,+∞[.

En�n, si x ̸∈ [1,+∞[, la fonction u 7→ 1

eu2 − x
est continue sur [0,+∞[ et

1

eu2 − x
∼

u→+∞
e−u2

, donc u 7→ 1

eu2 − x
est intégrable sur [0,+∞[.

Conclusion : l'ensemble recherché est C− [1,+∞[.

Q 8. Pour |x| < 1 et u ⩾ 0, |xe−u2

| ⩽ |x| < 1 donc la série géométrique
∑

(xe−u2

)n converge absolument :

+∞∑
n=0

(xe−u2

)n =
1

1− xe−u2 . Donc g(x) =
2x√
π

∫ +∞

0

e−u2

1− xe−u2 du =
2√
π

∫ +∞

0

+∞∑
n=0

e−(n+1)u2

xn+1 du.

Pour tout n ∈ N,
∫ +∞

0

|e−(n+1)u2

xn+1| du = |x|n+1

∫ +∞

0

e−(n+1)u2

du = |x[n+1

∫ +∞

0

e−t2 dt√
n+ 1

par changement

de variable t =
√
n+ 1u, donc

∫ +∞

0

|e−(n+1)u2

xn+1| du =

√
π

2

|x|n+1

√
n+ 1

.

Comme |x| < 1, la série
∑∫ +∞

0

|e−(n+1)u2

xn+1| du converge, donc d'après le th. d'intégration terme à terme,

g(x) =

+∞∑
n=0

∫ +∞

0

e−(n+1)u2

xn+1 du =

+∞∑
n=0

xn+1

√
n+ 1

= f(x).
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Q 9. g(x) =
−2et

2

√
π

∫ +∞

0

1

et2(eu2−t2 + 1)
du =

−2√
π

∫ +∞

0

φt(u) du donc g(x) +
2√
π

√
ln |x| = 2

π

(
t−

∫ +∞

0

φt(u) du

)
.

D'abord,∫ +∞

0

φt(u) du =

∫ t

0

φt(u) du+

∫ +∞

t

φt(u) du ⩽
∫ t

0

1 du+

∫ +∞

t

et
2−u2

du car φt(u) ⩽ 1 et φt(u) ⩽ et
2−u2

donc

∫ +∞

0

φt(u) du ⩽ t+ et
2

∫ +∞

t

e−u2

du. On pose α(t) = et
2

∫ +∞

t

e−u2

du.

Or

∫ +∞

t

e−u2

du =

∫ +∞

t

1

u
× ue−u2

du =

[
−1

2u
e−u2

]+∞

u=t

−
∫ +∞

t

1

2u2
e−u2

du (int. par partie licite sans di�culté),

donc

∫ +∞

t

e−u2

du =
e−t2

2t
−
∫ +∞

t

1

2u2
e−u2

du.

De plus,
1

2u2
e−u2

=
u→+∞

o(e−u2

) donc par intégration des relations de comparaison (cas convergent),∫ +∞

t

1

2u2
e−u2

du =
u→+∞

∫ +∞

t

e−u2

du, donc �nalement

∫ +∞

t

e−u2

du ∼
t→+∞

e−t2

2t
, donc α(t) −−−−→

t→+∞
0.

Ensuite,

si 0 < ε < t, alors

∫ t−ε

0

φt(u) du ⩽
∫ +∞

0

φt(u) du, donc

∫ t−ε

0

(φt(u) − 1) du − ε ⩽
∫ +∞

0

φt(u) du − t. On pose

β(t) =

∫ t−ε

0

(φt(u)− 1) du.

Or |β(t)| ⩽
∫ t−ε

0

|φt(u) − 1| du ⩽
∫ t−ε

0

eu
2−t2 du ⩽

∫ t−ε

0

eε
2−2tε du = (t − ε)eε

2−2tε, donc par encadrement,

β(t) −−−−→
t→+∞

0.

On a donc l'encadrement : pour tout t > ε > 0

β(t)− ε ⩽
∫ +∞

0

φt(u) du− t ⩽ α(t)

où α(t) −−−−→
t→+∞

0 et β(t) −−−−→
t→+∞

0

Maintenant, on conclut : soit ε > 0, il existe A > 0 tel que pour tout t ⩾ A, 0 ⩽ α(t) ⩽ 2ε et il existeB > 0 tel que
pour tout t ⩾ B, −ε ⩽ β(t) ⩽ 0,

donc pour t ⩾ max(ε,A,B), on a −2ε ⩽
∫ +∞

0

φt(u) du− t ⩽ 2ε, ce qui signi�e que lim
t→+∞

∫ +∞

0

φt(u) du− t = 0,

ce qui revient à dire lim
x→−∞

g(x)−
2
√

ln |x|√
π

= 0.

IV.

Q 10. sp(θ) =

p∑
n=1

sinnθ = Im

(
p∑

n=1

einθ

)
= Im

(
eiθ

1− einθ

1− eiθ

)
= sin (n+1)θ

2

sin nθ
2

sin θ
2

donc |sp| ⩽
1

sin θ
2

: la suite (sp(θ) est

bornée et de même pour la suite (cp(θ)).

Sp =

p∑
n=1

sinnθ√
n

=

p∑
n=1

(sn(θ)− sn−1(θ))
1√
n
=

p∑
n=1

sn(θ)
1√
n
−

p∑
n=1

sn−1(θ)
1√
n
=

p∑
n=1

sn(θ)
1√
n
−

p−1∑
n=0

sn(θ)
1√
n+ 1

=

p∑
n=1

sn(θ)

(
1√
n
− 1√

n+ 1

)
− sp−1(θ)

1
√
p
.

Comme la suite (sp(θ) est bornée, le terme sp−1(θ)
1
√
p
a pour limite 0 quand p→ +∞.

Et pour tout n ⩾ 1,

∣∣∣∣sn(θ)( 1√
n
− 1√

n+ 1

)∣∣∣∣ ⩽ K

(
1√
n
− 1√

n+ 1

)
: le majorant à droite est le terme général

d'une série télescopique convergente, donc la série
∑

sn(θ)

(
1√
n
− 1√

n+ 1

)
converge absolument, donc au total

Sp a une limite �nie quand p tend vers +∞. La série
∑
n⩾1

sinnθ√
n

converge et de même pour la série
∑
n⩾1

cosnθ√
n

.

Q 11.
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a) Pour n + 1 ≤ k ≤ 2n on a
π

4
≤ kπ

4n
≤ π

2
donc en minorant le sinus par sa plus petite valeur et la somme par le

nombre de termes fois la plus petite il vient :

2n∑
k=n+1

1√
k
sin

kπ

4n
⩾

2n∑
k=n+1

1√
2k

⩾ n× 1√
2.2n

=

√
n

2
.

b) Si la série
∑
n≥1

sinnθ√
n

converge uniformément sur l'intervalle [0, 2π], alors la suite de fonctions (Sp) où Sp : θ 7→

p∑
n=1

sinnθ√
n

converge uniformément sur l'intervalle [0, 2π], donc la suite (S2p − Sp) converge uniformément vers 0.

Or d'après ce qui précède,
∣∣S2n(

π
4n )− Sn(

π
4n )
∣∣ ne tend pas vers 0 quand n→ +∞, donc ∥S2n − Sn∥∞ ne converge

pas vers 0, ce qui contredit l'hypothèse.

Donc la série
∑
n≥1

sinnθ√
n

ne converge pas uniformément sur l'intervalle [0, 2π].

Q 12. On veut intervertir encore une fois un symbole intégrale et un sybole somme :

g
(
eiθ
)
=

∫ ∞

0

du

eu2 − eiθ
=

∫ ∞

0

∞∑
k=0

eikθ−(k+1)u2

du

=

∞∑
k=0

eikθ
∫ ∞

0

e−(k+1)u2

du =

∞∑
k=0

eikθ
∫ ∞

0

e−(k+1)u2

du

=

∞∑
k=0

eikθ√
k + 1

= f
(
eiθ
)

On considère la suite des sommes partielles :

TN (u) =

N∑
k=0

eikθ−(k+1)u2

= e−u2 1− ei(N+1)(θ−u2)

1− ei(θ−u2)

⇒ |TN (u)| ≤ 2

|eu2 − eiθ|
= φ(u)

fonction majorante qui est continue sur R parce que x = eiθ n'est pas égal à 1 (question 10◦), et intégrable

puisqu'équivalente à l'in�ni à e−u2

. Le théorème de convergence dominée est ainsi applicable à la suite (TN ) et
amène le résultat espéré :

pour tout nombre complexe x tel que f(x) existe on a f(x) = g(x).

En particulier, si on prend les parties réelles il vient

C(θ) = Re(f(eiθ)) =
2√
π

∫ ∞

0

Re
( eiθ

eu2 − eiθ
)
du

=
2√
π

∫ ∞

0

Re
( eiθeu

2 − 1

e2u2 − 2 cos θeu2 + 1

)
du =

2√
π

∫ ∞

0

Wθ(u) du

avec Wθ(u) =
eu

2

cos θ − 1

e2u2 − 2 cos θeu2 + 1
.

Q 13. Wθ s'annule pour eu
2

=
1

cos θ
soit θ = ±

√
− ln cos θ ; elle est aussi paire et véri�e W (0) = −1

2
; elle tend vers 0

à l'in�ni. Concernant W ′, il est commode de poser X = eu
2

≥ 1 ce qui conduit à étudier la fraction rationnelle

F (X) =
X cos θ − 1

X2 − 2X cos θ + 1
; on a F ′(X) =

−X2 cos θ + 2X − cos θ

D2
qui chaneg de signe pour X =

1± sin θ

cos θ
. Ici on

a
1 + sin θ

cos θ
= tan

(θ
2
+
π

4

)
> 1 >

1− sin θ

cos θ
= tan

(π
4
− θ

2

)
de sorte que, par composition, W ′ ne s'annule qu'en ±

√
ln tan(

θ

2
+
π

4
) ainsi qu'en 0 évidemment.
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Q 14. On pose v = u2. Il vient, tenant compte du fait que pour θ assez petit ev cos θ ≥ 1 pour tout v ≥ 0 :

C(θ) ≥ 1√
π

∫ 1

0

ev cos θ − 1

e2v − 2ev cos θ + 1
dv

=
1

2
√
π

[
ln(1− 2e−v cos θ + e−2v)

]1
0

=
1

2
√
π
ln

1− 2e−1 cos θ + e−2

2(1− cos θ)

Quand θ tend vers zéro, le numérateur tend vers une limite non nulle et le dénominateur tend vers 0. On trouve
ainsi que lim

θ→0+
C(θ) = +∞.
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