Mpi Devoir surveillé 5 - sujet CCINP-E3A

Probleme 1 - D’aprés E3A MP - 2013

Ce probléme a été librement inspiré par le sujet E3A de 2013 en MP.

Les deux parties ne sont pas indépendantes : les résultats des calculs de la partie 1 sont utilisés dans la partie 2.

of ot
On rappelle que la fonction sinus hyperbolique est la fonction sh : ¢t — ———
I. Calculs d’intégrales
too arctana )
Q 1. Soit a > 0. Justifier que 'intégrale / PR dt converge et montrer qu’elle vaut ———. Indication : on
1 a a

t
pourra calculer la dérivée de t — arctan <)
a

+o00o
Q 2. Soit a,b deux réels tels que a > 0 et b > 0. On pose I(a,b) = / et dt.
0

a) Justifier que I(a,b) est une intégrale convergente.
b) Donner une relation simple entre I(a + 1,b) et I(a,b).
c) Pour n € N, donner une expression de I(n,b) en fonction de n et b.

Q 3. Soit a,b deux réels strictement positifs.
+oo
a) Justifier que l'intégrale / sin(at)e™® dt converge.
0

a . . . . . .
b) Montrer qu’elle vaut ——5- Indication : on pourra faire intervenir une exponentielle compleze.
a

+b
+o0 tn
Q 4. Pour n € N* on pose S, = / — dt.
o  sht
a) Justifier que S, est une intégrale convergente.
400
1
b) Montrer que pour ¢ > 0, i 2 Ze‘wfﬂ)t dt. Cette égalité est appelée E.
S
k=0
+oo 1
C) Montrer que Sn =2 (n') kz_o W

Q 5. Soit « un réel.

< 1
a) A quelle condition sur « la série Z — converge-t-elle 7 Dans ce cas, on note Z(«) sa somme.
n>1 n
+oo
b) Donner la valeur de —_—
) 2 @ e

impairs dans la somme Z(«) en justifiant.

a laide de Z(«). Indication : on pourra séparer les termes d’indices pairs et

2
c) Donner une expression de S,, a 'aide de Z(n + 1). En admettant que Z(2) = %, donner la valeur de Sj.

«

a) En utilisant une comparaison série-intégrale, montrer que pour tout a > 1, Z(«a) <

b) En déduire que pour n € N*, 2 (n!) < 5, < 4 (n!).

a—1"

II. Etude d’une fonction définie par une intégrale

sin(axt)
sht

Q 7. Montrer que f est définie sur R et qu’elle est impaire.

+oo
Pour z € R, on pose f(z) = / dt.
0

Dans toute la suite, on étudie la fonction f sur Ry seulement.

Q 8.
a) Justifier que pour tout u € R, |sinu| < |ul.
b) Montrer que pour tout x € Ry, |f(z)| < xS5;.



Q 9. Montrer que f est continue sur R, . Indication : on pourra commencer par montrer la continwité sur tout segment
[0, A] ou A > 0.

—+ o0

Q 10. En reéutilisant 1’égalité E, montrer que pour tout € R, f(z) = Z

n=0

2z
22+ (2n+1)%
2x

Pour n € N, on pose u,, : © — 22+ (2n+ 1)2°

Q 11. La série de fonctions Z uy, est-elle normalement convergente sur [0, +-o00[?
n>=0

Q 12. On pose v, = Nuy,.

a) Etudiez la nature de la convergence de la suite de fonctions (u,) : converge-t-elle simplement sur R, ? uniformément

sur Ry 7
b) Méme question avec la suite (vy,).
“+o00 2n 1
¢) Montrer que pour tout n € N et 2 > 0, Z up(x) = Z up(x) = §v2n(x).
k=n+1 k=n+1

La série de fonctions E uy, est-elle uniformément convergente sur [0, +oo[?
n=0

2

Vérifier que pour tout = € Ry, |u, (z)| < N e VL

)
b) Montrer que f est de classe C* sur R,.
) Donner la valeur de f(0) en utilisant la partie 1.

Q 14. Soit z > 0, fixé.

2 2n+1 1
a) Montrez que pour tout n € N*, ———— < — du.
) 2 duep " ’x2+(2n+1)2\/2n1 22t o

2 te 1
b) En déduire que f(z) < z (sz —1—/1 P du), puis que 0 < f(z) < 1+ g

a) Rappeler le développement en série entiére de la fonction sin.

b) Montrer que f est développable en série entiére sur | — 1, +1[, puis que le rayon de convergence de cette série entiére
est exactement égal a 1.

+oo i
sint
Q 16. Montrer que l'intégrale I = / 5 dt converge. On pourra intégrer par parties.
0
On admet que I = g

O t— ! !
n pose g : _— .
P g sht t

Q 17. Quelles sont les limites de g en 0 et +00 ? Montrer que ¢’ est intégrable sur ]0, +o0.
Q 18.
T Hoeo
a) Montrer que pour tout x > 0, f(z) = 3 —1—/ g(t) sin(zxt) dt.
0

T
b) Montrer que f a pour limite 5 en +00.

Fin du probléme.

L’étude de la fonction f se termine ici. Avec plus de travail, on peut montrer que pour tout = € R, f(z) = gth (zx) ol

sh
th = N est la fonction tangente hyperbolique.
¢



Devoir surveillé 5 - sujet CCINP-E3A - Corrigé

Probléme 1

t 1 a
Q 1. La dérivée de t — arctan () est la fonction ¢ — PERGE. c’est-a-dire t — ———.
a a1+ ( ) a®+t

X 1 X X 1
Donc PR 2 — arctan = — | arctan — — arctan — |.
1 +t a —1 @ a a
s
2’

+ee 1(m 1
Or lim arctan — = —, donc l'intégrale —— dt converge et vaut — | = — arctan — |.
a 1 a®+t a \ 2 a

X—+oo

. . 1 . .
Or une célébre formule de trigonométrie affirme que pour tout x > 0, arctanx + arctan — = 57 donc puisque a > 0, il
T

. too g arctan a
vient 3 5 dt = .
1 a®+1 a

Q 2.

a) La fonction ¢ : t — t%e ™%

1 1
est continue sur [0, +-00[. De plus, t%e =" = o (t2> quand t — +o00, donc comme ¢ —> I

+oo
est intégrable sur [1, +oo[, ¢ V'est aussi, donc I(a,b) = / v+ /  est une intégrale convergente.
0 1

_e—bt] T +oo —bt
b) On effectue une intégration par parties : comme les deux quantités [t““ X b} et / (a+1)t* x dt
0

0
sont bien définies, alors

“+ o0

_ bt +o0o _ bt 1
I(a+1,b) = [t@“ x eb} —/ (a+ 1)t x = at = “ 2 1(a,p).
0

o b b

1
¢) La relation précédente donne une relation de récurrence : I(n+1,b) = nt I(n,b), puis une preuve par récurrence
n!
montre que pour tout n € N, I(n,b) = T
On pose Z(n) le prédicat « I(n,b) = an'rl ».
+o0 1

Z(0) est vraie, car il est bien connu que / bt = 7

0

1 1 ! 1!
Si P(n) est vraie, alors I(n+ 1,b) = n;r I(n,b) = n;}t b:“ = (7;);:2) donc Z(n + 1) est vraie.

D’apreés le principe de récurrence, pour tout n € N, &?(n) est vraie.

+oo
a) Pour tout t € [0, +oo[, |sin(at)e | < e7% et t — e " est intégrable sur R, donc I’intégrale / sin(at)e™" dt
0

converge absolument.

) ) +oo +o0 ] (—btia)tq T
b) sin(at)e™® = Im(e'*e ™) = Im(e(~0Fi2)) donc/ sin(at)e™" dt = Tm </ elmbHia)t dt> =Im {e]
0 0 —b+ia |,

—b+ia mb—ia:mb2+a2:a2+b2'

+oo :

. 1 1 b

or [e(7bFTiat| — o=t T 0 donc / sin(at)e " dt = Im (O — ) =1 tia a
—+00 0

n

a) La fonction ¢ : t — i est continue sur |0, 4+o0].
s

1
Sin =1, elle a pour limite 1 en 0 et si n > 2, elle a pour limite 0 en 0, car sht ~ t. L’intégrale /  converge par
t—0
0

conséquent (fausse singularité en 0).

n

Quand t — +o0, p(t) ~ — = 2t"e~ ", donc d’apreés la question 2.a., ¢ est intégrable sur [1,4+o0l.
e

Donc au total, ¢ est intégrable sur R’ , donc S, est une intégrale convergente.



b)

I1.
Q.

1 2 —t 1 ot 1 = —2t\k = 2kt fons
Pourt>0,ﬁ=m=26 Xm, OrOSe <1, dOHCm:Z(e ) :Ze (Serle
k=0 k=0
1 =
¢ométrique), donc — =2 —(k+1)t,
géométrique), don o Ze
k=0
D’aprés la question précédente, pour tout ¢ > 0, =2 Z the~ R+,

— Or les fonctions ¢ — t"e™2**D? sont, intégrables sur [0, +oo|;

+o0 +oo
— et la série des intégrales / |tre” (kDT qp = / e Dt gt cest-a-dire la série Z
0 0 k>0

n!
(2k + 1)n+1

(d’apres la question 2.c.), est une série convergente.

Donc d’aprés le th. d’intégration terme & terme, on peut intervertir Z et / :

+oo

—+o0 tn —+o0 1
= 9 n,—(2k+1) —9 / n,—(2k-+1)t ! '
S /O 7= /O ( § t"e ) dt = § t"e dt=2(n) TV

k=0

1 . .
C’est du cours : E — converge si et seulement si a > 1.
n
n>1

. 1 .-
La série E — est & termes positifs, donc quand a > 1, elle est absolument convergente, donc d’aprés le cours sur
n
n>1
les familles sommables, on peut sommer par paquets, ici les termes d’indices pairs et les autres d’indices impairs.

+oo 1 +o00o 1 +oo 1 +oo 1
Z = _— _—
@=> =t X w-l@mr e
n=1 n=1 k=1 k=0
n pair n impair
+o00 +oo +oo
1 1 1 Z(w) 1 1
0O —_——= —=—"d — = (1-—— ) Z(a).
'Y e = g D g = aedone S s = (1 5 Z00)
k=1 k=1 k=0
+oo
Spn = 2(n!) E __ =2(n)(1- 1 Z(n + 1) d’aprés les questions précédentes.
P (Qk + 1)n+1 on+1

3 2 2
En particulier, S; =2 x — x % = %

S

1 1 ko
Soit a > 1. La fonction ¢ — o est décroissante sur |0, +o00[, donc pour tout k € Net k > 2, s < / o dt.
k—1

"1 L | | el 1 1
On additionne ces inégalités : pour tout n > 2, Z — < Z/ — dt = / o dt = = 1——).
k 1 t=1

—a+1 a—1 no—1

1 1 1
Donc pour tout n > 2, E k—a < T <1 — a—l) < T Par passage a la limite quand n — +00, on obtient
o — n @
1

o
< ——,d Z(a)=1 < = .
Zka one +Zka o TT T AT
1 1 1 1
D’aprés la question précédente, S, < 2(n!) <1 - 2+1> x + < 2(n!) x nt ,ordés quen > 1, o0n a nt <2
n n n n

donc S,, < 4(n!).

L’autre inégalité est évidente, car le premier terme dans la somme S, est 1 et les autres sont positifs, donc 2(n!) < S,,.

Siz =0, il est évident que f(x) existe et vaut 0.

Six # 0, alors

— la fonction t —

— elle est prolongeable par continuité en 0 car

sin(xt)

S

est, continue sur |0, 4o00[;
sin(xt) xt
sht t—0 ¢

= z donc elle est intégrable sur ]0,1];



sin(xt) 2
— enfin, pour ¢t > 1, ,
P - sht | ~ et —et
. 2 _¢ _t o
oron aaussi ——— ~ 2e7" ettt e " est intégrable sur [1,4o0],
et —e~t t—4oc0
sin(xt .
donc t — () Pest aussi.
sht
sin(zt .
Au total, t — % est intégrable sur ]0, +oo].
s
L’imparité est évidente, car sin est elle-méme une fonction impaire.
Q 8.
a) Il s’agit de I'inégalité des accroissements finis appliquée a la fonction sin entre 0 et u, car |sin’ | = |cos| < 1

o0 | sin(xt)| e |at|
P R < s
b) Pour tout x € Ry, |f(z)] /0 sht dt /0 sht dt =51

Q 9. Soit A>0.

— Pour tout ¢ € ]0, +o0|, z — est continue sur [0, A].

1 t t t t
busl}(lﬁ )’ < % < A@ (hypothése de domination) et ¢ i est

sin(at)
sht

— Pour tout = € [0, 4], pour tout ¢ € ]0,+oo],

intégrable sur |0, 4+o00[ (partie 1, question 4.).

Donc d’apreés le th. de continuité sous le signe intégrale, f est continue sur [0, A].

Comme ceci est vrai pour tout A > 0, par réunion d’intervalles, f est continue sur U [0, 4] = [0, +o0].
A>0

Q 10. D’aprés l'inégalité E, pour tout « € Ry, f(z) = 2/ <Z sin(zt)e 2k+1)t> dt.
0

— Or pour tout k > 0, la fonction ¢ — sin(zt)e”(2F+1)?

+oo +oo
1
— Et pour tout £ € N, / |sin(zt)e” PFHDt dt < / wte” GEHD 4 = T d’apres les questions 8.a. et
I.2.c.

est intégrable d’aprés 1.3.a.

—(2k+1)t

Donc par comparaison de séries & termes positifs, la série E / | sin(zt)e | dt converge.

k>0

D’aprés le th. d’intégration terme & terme, on peut alors intervertir Z et / :

+oo
=2 e~ qp = 2 / He @t qr = 25 T qapres 1 £
f(z) /o (Z sin(z Z sin(x ,;J T k1) aprés la question
1.3.b.
(2n+1)? — 2?

(22 + (2n+1)2)2
et en particulier sa valeur maximale, atteinte en 2n + 1.

Q 11. Pour tout n € Net x >0, u,(x) =2 d’ott on en déduit les variations de |u,| = u, sur [0, +o0]

Donc pour tout n € N, ||un||<[>%’+°°[ =u,(2n +1) = Par comparaison de séries a termes positifs, la série

2n+1
Z |t ||l diverge, donc la série de fonctions Zun ne converge pas normalement sur R .

Q 12.

a) D’aprés la question IT 10, la série Z u, converge simplement sur R, , donc la suite (u,) converge simplement vers
0 sur R,.

1
T 1 ——— 0 donc la suite (u,) converge uniformément vers 0 sur R.
n n——+oo

2nx 2nx T

De plus, ||t [|l%70 = u, (20 +1) =

b) Pour tout = > 0, v,(z) =

TT et ety CEENE BT vl 0, donc la suite de focntions (vy,)

converge simplement vers 0 sur R, .

De plus, [|v, ]|l = n|ju, [|l& =l = 5 Tzr 7 ne tend pas vers 0 quand n — 400, donc la suite (v,) ne converge
n
pas uniformément vers 0 sur R+
2n
c¢) Pour tout n € Net z > 0, Z ug(z Z ug(z) car pour tout k € N, ug(z) > 0.
k=n+1 k=n-+1



2n

1
Et pour tout k € [n + 1,2n], ug(z) > ua,(z) donc Z ug(x) = n X ugy(x) = 51}2”(1’) > 0.
k=n-+1
+oo
Si la série Z u, converge uniformément sur R, alors la suite des restes partiels ( Z uk(x)> converge unifor-
k=n+41
+oo
mément vers 0 sur R, or par 'encadrement précédent, on a Z k|| = =l|vanllec donc lm ||vap|leo =0, ce
1 2 n—-+oo

o0
qui signifie que la suite (vq,,) converge uniformément vers 0, ce qui est faux d’aprés I’étude précédente.

Donc la série E up ne converge pas uniformément sur R, .

(2n +1)% — 2? |(2n + 1) — 22| - (2n +1)% + 22 2

Simple calcul : v, (z) = 2 donc |u;, (z)| = = -

(2 + (2n +1)2)2 (24 (2n+1)2)? (x24+ (2n+1)2)2 224 (2n+1)?
par inégalité triangulaire.
2
Alors on en déduit : pour tout n € N, pour tout x € Ry, |ul, (z)| < [CFER
Or la série Z 5 est convergente. Donc la série Z u,, est normalement convergente sur [0, +o00].

Comme les fonctions u,, sont toutes de classe C' et que f est la somme de la série Zun (convergence simple),

alors d’aprés le th. de dérivation sous le signe Z, f est de classe C! sur Ry et pour tout z € Ry, f(z) =
“+oo

(2n +1)% — 22
2 Z (22 4+ (2n + 1)2)2°

n=0

2
T

E ticuli ’O:QEizS:—d’ os I.5.c.

n particulier, f'(0) 2 CEEEIE 1= - daprés c

1
La fonction u — P est décroissante sur R, or pour tout n > 1, 2n — 1,2n + 1] C Ry,
x

u2
d /2n+1 1 d 3 /2n+1 1 d 7 . . d. 2 3 /2’!‘L+1 1 d
onc ———— = du < ——— du, c’est-ad-dire —————5 < — du.
o1 22+ (2n+1)? ! on—1 T2 +u? ! 22 + (2n + 1)? on—1 22+ u? !
On additionne les inégalités précédentes :
+00 2n+1
Z m Z/Q R u2 / $2 wy du, donc en ajoutant le premier terme de la somme
_ 2 2 te
(pour n = O), qul vaut ;[,'27—{—]_ on obtient f( ) <z 1+ 22 + m du ).
D'apres 1 tion L1 lors f(z) < 2 Jrarctanac 2z + arct
apreés la question I.1. on a alors f(z) < z = arctan x.
P d 1+ a2 x 2 +1
2
Or > f_ T S < 1et arctanz < 5 donc il vient f(z) <1+ g
Le signe de f(x) est évident d’aprés son écriture sous forme de série (question 10.).
“+oo
_1)n
Cours : sinz = z::o Mﬁ"“.
+o0 Z:;S% %(1’t)2n+1 +oo [+ (_1)n t2n+1 i1
Soit @ € [0, 1[. Al = et dt = —_— mH) e
oit z € [0,1[. Alors f(z) /0 D /0 > Gt
. (=)™ 2 s :
— Pour tout n € N, la fonction t » ——————= est intégrable sur |0, +oo[ d’apreés la question I.4.a.
(2n+1)! sht
“+o0 (71)71 t2n+1 :C2n+1 “+o0 t2n+1 l,2n+1
— Et tout n € N, S A :7/ dt = Sontt,
pourtout /0 ‘(211—}— 1) sht 2n + 1) sht (2n + 1172+
“+o0 (_1)71 t2n+1 x2n+1
donc / L gnfl < ———— x4(2n + 1) = 42*" ! d’apreés 1.6.b.
0 (2n+1)! sht (2n +1)!

Comme 0 < x < 1, la série g 4g?ntl converge, donc par comparaison de séries & termes positifs, la série
n t2n+

+oo
— 2n+1
ZA ‘ 2n + 1)! sht e ¥ dt converge.




Q 16.
Q 17.

Q 18.

400
_1)n
D’aprés le th. d’intégration terme a terme, on a donc f(z) = Z ((2(714—)1)'&"“) w2t
n=0 :

La fonction f est donc développable en série entiére sur [0, +1[, et donc sur | — 1, +1], car 'ouvert de convergence
d’une série entiére est toujours symétrique par rapport a 0.

De plus, comme 2(2n + 1)! < So,41, alors pour = > 1, (2(;—]’;)71]-)!52n+1 2"t > 2. donc la série entiére précédente
diverge grossiérement quand x > 1.
Le rayon de convergence est donc exactement égal a 1.
Exercice fait en cours (voir chapitre Intégrales généralisées).
En +00, il n’y a pas de forme indéterminée : Eg.}g =0.
3
g(t) = tt_s}Sl}tlt o % = %t = 0, car le d.I. de sh en 0 & 'ordre 3 est sht =1¢ + % + o(t?).

On signale d’abord que ¢ est continue sur |0, +oo].

_ch(t)+ 1 hi - et deduit 0 1 d ! ost
b tcomme cht o~ sht ~ o onendéduit que ¢'(f) ~ - donc g’ es

Pour tout t > 0, ¢'(t) =

intégrable sur [1, +ool.
—1

En utilisant les d.l. de ch et sh en 0 & ’ordre 4, on calcule de méme lién g = 5 donc on a une fausse singulatité

en 0 : ¢’ est donc intégrable sur ]0, 1].

Au total, ¢' est intégrable sur |0, +oo].

0 sin(wt) oo )
Sous réserve de convergence, pour tout z > 0, f(z) = / ; dt + g(t) sin(xt) dt.
0 0
400 i +00
t
Or par changement de variable u = zt, w dt = / sin(u) du = g converge, donc la linéarité de
0 u

0
I'intégrale est utilisable, ce qui autorise le calcul précédent.

2
Sous réserve de convergence, on effectue une intégration par parties :

/0+<>0 g(t) sin(zt) dt = [ cosg(cxt)g(t)} - + /O+°° g'(t) cos(at) dt

t=0 z

T oo
Donc f(z) = = —l—/o g(t) sin(xt) dt.

Cette intégration par parties est licite car le crochet de variations vaut 0 grace aux calculs des limites de g en 0 et

+00.

400 o0 —+00 t+oo

t t 1

thvient done | [ gysinen | = | [0 e < [ lro = s [ gora

0 0 €z 0 €z T Jo

+o0 T
donc par encadrement, lirf g(t) sin(xt) dt = 0, i.e. f a pour limite 5 en ~+00.
T—r+00 0



