
Mpi Devoir surveillé 5 - sujet CCINP-E3A

Problème 1 - D'après E3A MP - 2013

Ce problème a été librement inspiré par le sujet E3A de 2013 en MP.

Les deux parties ne sont pas indépendantes : les résultats des calculs de la partie 1 sont utilisés dans la partie 2.

On rappelle que la fonction sinus hyperbolique est la fonction sh : t 7→ et − e−t

2
.

I. Calculs d'intégrales

Q 1. Soit a > 0. Justi�er que l'intégrale
∫ +∞

1

1

a2 + t2
dt converge et montrer qu'elle vaut

arctan a

a
. Indication : on

pourra calculer la dérivée de t 7→ arctan

(
t

a

)
.

Q 2. Soit a, b deux réels tels que a ⩾ 0 et b > 0. On pose I(a, b) =

∫ +∞

0

tae−bt dt.

a) Justi�er que I(a, b) est une intégrale convergente.
b) Donner une relation simple entre I(a+ 1, b) et I(a, b).
c) Pour n ∈ N, donner une expression de I(n, b) en fonction de n et b.

Q 3. Soit a, b deux réels strictement positifs.

a) Justi�er que l'intégrale
∫ +∞

0

sin(at)e−bt dt converge.

b) Montrer qu'elle vaut
a

a2 + b2
. Indication : on pourra faire intervenir une exponentielle complexe.

Q 4. Pour n ∈ N∗, on pose Sn =

∫ +∞

0

tn

sh t
dt.

a) Justi�er que Sn est une intégrale convergente.

b) Montrer que pour t > 0,
1

sh t
= 2

+∞∑
k=0

e−(2k+1)t dt. Cette égalité est appelée E.

c) Montrer que Sn = 2 (n!)

+∞∑
k=0

1

(2k + 1)n+1
.

Q 5. Soit α un réel.

a) À quelle condition sur α la série
∑
n⩾1

1

nα
converge-t-elle ? Dans ce cas, on note Z(α) sa somme.

b) Donner la valeur de
+∞∑
k=0

1

(2k + 1)α
à l'aide de Z(α). Indication : on pourra séparer les termes d'indices pairs et

impairs dans la somme Z(α) en justi�ant.

c) Donner une expression de Sn à l'aide de Z(n+ 1). En admettant que Z(2) =
π2

6
, donner la valeur de S1.

Q 6.

a) En utilisant une comparaison série-intégrale, montrer que pour tout α > 1, Z(α) ⩽
α

α− 1
.

b) En déduire que pour n ∈ N∗, 2 (n!) ⩽ Sn ⩽ 4 (n!).

II. Étude d'une fonction dé�nie par une intégrale

Pour x ∈ R, on pose f(x) =

∫ +∞

0

sin(xt)

sh t
dt.

Q 7. Montrer que f est dé�nie sur R et qu'elle est impaire.

Dans toute la suite, on étudie la fonction f sur R+ seulement.

Q 8.

a) Justi�er que pour tout u ∈ R, | sinu| ⩽ |u|.
b) Montrer que pour tout x ∈ R+, |f(x)| ⩽ xS1.
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Q 9. Montrer que f est continue sur R+. Indication : on pourra commencer par montrer la continuité sur tout segment

[0, A] où A > 0.

Q 10. En réutilisant l'égalité E, montrer que pour tout x ∈ R+, f(x) =
+∞∑
n=0

2x

x2 + (2n+ 1)2
.

Pour n ∈ N, on pose un : x 7→ 2x

x2 + (2n+ 1)2
.

Q 11. La série de fonctions
∑
n⩾0

un est-elle normalement convergente sur [0,+∞[ ?

Q 12. On pose vn = nun.

a) Étudiez la nature de la convergence de la suite de fonctions (un) : converge-t-elle simplement sur R+ ? uniformément
sur R+ ?

b) Même question avec la suite (vn).

c) Montrer que pour tout n ∈ N et x ⩾ 0,
+∞∑

k=n+1

uk(x) ⩾
2n∑

k=n+1

uk(x) ⩾
1

2
v2n(x).

La série de fonctions
∑
n⩾0

un est-elle uniformément convergente sur [0,+∞[ ?

Q 13.

a) Véri�er que pour tout x ∈ R+, |u′
n(x)| ⩽

2

x2 + (2n+ 1)2
.

b) Montrer que f est de classe C1 sur R+.
c) Donner la valeur de f ′(0) en utilisant la partie 1.

Q 14. Soit x > 0, �xé.

a) Montrez que pour tout n ∈ N∗,
2

x2 + (2n+ 1)2
⩽
∫ 2n+1

2n−1

1

x2 + u2
du.

b) En déduire que f(x) ⩽ x

(
2

1 + x2
+

∫ +∞

1

1

x2 + u2
du

)
, puis que 0 ⩽ f(x) ⩽ 1 +

π

2
.

Q 15.

a) Rappeler le développement en série entière de la fonction sin.
b) Montrer que f est développable en série entière sur ]−1,+1[, puis que le rayon de convergence de cette série entière

est exactement égal à 1.

Q 16. Montrer que l'intégrale I =

∫ +∞

0

sin t

t
dt converge. On pourra intégrer par parties.

On admet que I =
π

2
.

On pose g : t 7→ 1

sh t
− 1

t
.

Q 17. Quelles sont les limites de g en 0 et +∞ ? Montrer que g′ est intégrable sur ]0,+∞[.

Q 18.

a) Montrer que pour tout x > 0, f(x) =
π

2
+

∫ +∞

0

g(t) sin(xt) dt.

b) Montrer que f a pour limite
π

2
en +∞.

Fin du problème.

L'étude de la fonction f se termine ici. Avec plus de travail, on peut montrer que pour tout x ∈ R, f(x) =
π

2
th
(π
2
x
)
où

th =
sh

ch
est la fonction tangente hyperbolique.
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Devoir surveillé 5 - sujet CCINP-E3A - Corrigé

Problème 1

I.

Q 1. La dérivée de t 7→ arctan

(
t

a

)
est la fonction t 7→ 1

a

1

1 +
(
t
a

)2 , c'est-à-dire t 7→ a

a2 + t2
.

Donc
∫ X

1

1

a2 + t2
dt =

[
1

a
arctan

(
t

a

)]X
t=1

=
1

a

(
arctan

X

a
− arctan

1

a

)
.

Or lim
X→+∞

arctan
X

a
=

π

2
, donc l'intégrale

∫ +∞

1

1

a2 + t2
dt converge et vaut

1

a

(
π

2
− arctan

1

a

)
.

Or une célèbre formule de trigonométrie a�rme que pour tout x > 0, arctanx + arctan
1

x
=

π

2
, donc puisque a > 0, il

vient
∫ +∞

1

1

a2 + t2
dt =

arctan a

a
.

Q 2.

a) La fonction φ : t 7→ tae−bt est continue sur [0,+∞[. De plus, tae−bt = o

(
1

t2

)
quand t → +∞, donc comme t 7→ 1

t2

est intégrable sur [1,+∞[, φ l'est aussi, donc I(a, b) =

∫ 1

0

φ+

∫ +∞

1

φ est une intégrale convergente.

b) On e�ectue une intégration par parties : comme les deux quantités

[
ta+1 × −e−bt

b

]+∞

0

et
∫ +∞

0

(a+1)ta× −e−bt

b
dt

sont bien dé�nies, alors

I(a+ 1, b) =

[
ta+1 × −e−bt

b

]+∞

0

−
∫ +∞

0

(a+ 1)ta × −e−bt

b
dt =

a+ 1

b
I(a, b).

c) La relation précédente donne une relation de récurrence : I(n+1, b) =
n+ 1

b
I(n, b), puis une preuve par récurrence

montre que pour tout n ∈ N, I(n, b) =
n!

bn+1
.

On pose P(n) le prédicat � I(n, b) =
n!

bn+1
�.

P(0) est vraie, car il est bien connu que
∫ +∞

0

e−bt dt =
1

b
.

Si P(n) est vraie, alors I(n+ 1, b) =
n+ 1

b
I(n, b) =

n+ 1

b
× n!

bn+1
=

(n+ 1)!

bn+2
donc P(n+ 1) est vraie.

D'après le principe de récurrence, pour tout n ∈ N, P(n) est vraie.

Q 3.

a) Pour tout t ∈ [0,+∞[, | sin(at)e−bt| ⩽ e−bt et t 7→ e−bt est intégrable sur R+, donc l'intégrale
∫ +∞

0

sin(at)e−bt dt

converge absolument.

b) sin(at)e−bt = Im(eiate−bt) = Im(e(−b+ia)t) donc
∫ +∞

0

sin(at)e−bt dt = Im

(∫ +∞

0

e(−b+ia)t dt

)
= Im

([
e(−b+ia)t

−b+ ia

]+∞

t=0

)

or |e(−b+ia)t| = e−bt −−−−→
t→+∞

0 donc
∫ +∞

0

sin(at)e−bt dt = Im

(
0− 1

−b+ ia

)
= Im

1

b− ia
= Im

b+ ia

b2 + a2
=

a

a2 + b2
.

Q 4.

a) La fonction φ : t 7→ tn

sh t
est continue sur ]0,+∞[.

Si n = 1, elle a pour limite 1 en 0 et si n ⩾ 2, elle a pour limite 0 en 0, car sh t ∼
t→0

t. L'intégrale
∫ 1

0

φ converge par

conséquent (fausse singularité en 0).

Quand t → +∞, φ(t)∼ 2tn

et
= 2tne−t, donc d'après la question 2.a., φ est intégrable sur [1,+∞[.

Donc au total, φ est intégrable sur R∗
+, donc Sn est une intégrale convergente.
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b) Pour t > 0,
1

sh t
=

2

et − e−t
= 2e−t × 1

1− e−2t
, or 0 ⩽ e−2t < 1, donc

1

1− e−2t
=

+∞∑
k=0

(e−2t)k =

+∞∑
k=0

e−2kt (série

géométrique), donc
1

sh t
= 2

+∞∑
k=0

e−(2k+1)t.

c) D'après la question précédente, pour tout t > 0,
tn

sh t
= 2

+∞∑
k=0

tne−(2k+1)t.

� Or les fonctions t 7→ tne−(2k+1)t sont intégrables sur [0,+∞[ ;

� et la série des intégrales
∫ +∞

0

|tne−(2k+1)t| dt =

∫ +∞

0

tne−(2k+1)t dt, c'est-à-dire la série
∑
k⩾0

n!

(2k + 1)n+1

(d'après la question 2.c.), est une série convergente.

Donc d'après le th. d'intégration terme à terme, on peut intervertir
∑

et
∫

:

Sn =

∫ +∞

0

tn

sh t
dt =

∫ +∞

0

(
2

+∞∑
k=0

tne−(2k+1)t

)
dt = 2

+∞∑
k=0

∫ +∞

0

tne−(2k+1)t dt = 2 (n!)

+∞∑
k=0

1

(2k + 1)n+1
.

Q 5.

a) C'est du cours :
∑
n⩾1

1

nα
converge si et seulement si α > 1.

b) La série
∑
n⩾1

1

nα
est à termes positifs, donc quand α > 1, elle est absolument convergente, donc d'après le cours sur

les familles sommables, on peut sommer par paquets, ici les termes d'indices pairs et les autres d'indices impairs.

Z(α) =

+∞∑
n=1
n pair

1

nα
+

+∞∑
n=1

n impair

1

nα
=

+∞∑
k=1

1

(2k)α
+

+∞∑
k=0

1

(2k + 1)α
.

Or
+∞∑
k=1

1

(2k)α
=

1

2α

+∞∑
k=1

1

kα
=

Z(α)

2α
, donc

+∞∑
k=0

1

(2k + 1)α
=

(
1− 1

2α

)
Z(α).

c) Sn = 2(n!)

+∞∑
k=0

1

(2k + 1)n+1
= 2(n!)

(
1− 1

2n+1

)
Z(n+ 1) d'après les questions précédentes.

En particulier, S1 = 2× 3

4
× π2

6
=

π2

4
.

Q 6.

a) Soit α > 1. La fonction t 7→ 1

tα
est décroissante sur ]0,+∞[, donc pour tout k ∈ N et k ⩾ 2,

1

kα
⩽
∫ k

k−1

1

tα
dt.

On additionne ces inégalités : pour tout n ⩾ 2,
n∑

k=2

1

kα
⩽

n∑
k=2

∫ k

k−1

1

tα
dt =

∫ n

1

1

tα
dt =

[
t−α+1

−α+ 1

]n
t=1

=
1

α− 1

(
1− 1

nα−1

)
.

Donc pour tout n ⩾ 2,
n∑

k=2

1

kα
⩽

1

α− 1

(
1− 1

nα−1

)
⩽

1

α− 1
. Par passage à la limite quand n → +∞, on obtient

+∞∑
k=2

1

kα
⩽

1

α− 1
, donc Z(α) = 1 +

+∞∑
k=2

1

kα
⩽ 1 +

1

α− 1
=

α

α− 1
.

b) D'après la question précédente, Sn ⩽ 2(n!)

(
1− 1

2n+1

)
× n+ 1

n
⩽ 2(n!)× n+ 1

n
, or dès que n ⩾ 1, on a

n+ 1

n
⩽ 2

donc Sn ⩽ 4(n!).

L'autre inégalité est évidente, car le premier terme dans la somme Sn est 1 et les autres sont positifs, donc 2(n!) ⩽ Sn.

II.
Q 7. Si x = 0, il est évident que f(x) existe et vaut 0.

Si x ̸= 0, alors

� la fonction t 7→ sin(xt)

sh t
est continue sur ]0,+∞[ ;

� elle est prolongeable par continuité en 0 car
sin(xt)

sh t
∼

t→0

xt

t
= x donc elle est intégrable sur ]0, 1] ;
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� en�n, pour t ⩾ 1,

∣∣∣∣ sin(xt)sh t

∣∣∣∣ ⩽ 2

et − e−t
,

or on a aussi
2

et − e−t
∼

t→+∞
2e−t et t 7→ e−t est intégrable sur [1,+∞[,

donc t 7→ sin(xt)

sh t
l'est aussi.

Au total, t 7→ sin(xt)

sh t
est intégrable sur ]0,+∞[.

L'imparité est évidente, car sin est elle-même une fonction impaire.

Q 8.

a) Il s'agit de l'inégalité des accroissements �nis appliquée à la fonction sin entre 0 et u, car | sin′ | = | cos | ⩽ 1.

b) Pour tout x ∈ R+, |f(x)| ⩽
∫ +∞

0

| sin(xt)|
sh t

dt ⩽
∫ +∞

0

|xt|
sh t

dt = xS1.

Q 9. Soit A > 0.

� Pour tout t ∈ ]0,+∞[, x 7→ sin(xt)

sh t
est continue sur [0, A].

� Pour tout x ∈ [0, A], pour tout t ∈ ]0,+∞[,

∣∣∣∣ sin(xt)sh t

∣∣∣∣ ⩽ xt

sh t
⩽ A

t

sh t
(hypothèse de domination) et t 7→ t

sh t
est

intégrable sur ]0,+∞[ (partie 1, question 4.).

Donc d'après le th. de continuité sous le signe intégrale, f est continue sur [0, A].

Comme ceci est vrai pour tout A > 0, par réunion d'intervalles, f est continue sur
⋃
A>0

[0, A] = [0,+∞[.

Q 10. D'après l'inégalité E, pour tout x ∈ R+, f(x) = 2

∫ +∞

0

(
+∞∑
k=0

sin(xt)e−(2k+1)t

)
dt.

� Or pour tout k ⩾ 0, la fonction t 7→ sin(xt)e−(2k+1)t est intégrable d'après I.3.a.

� Et pour tout k ∈ N,
∫ +∞

0

| sin(xt)e−(2k+1)t| dt ⩽
∫ +∞

0

xte−(2k+1)t dt = x
1

(2k + 1)2
d'après les questions 8.a. et

I.2.c.

Donc par comparaison de séries à termes positifs, la série
∑
k⩾0

∫ +∞

0

| sin(xt)e−(2k+1)t| dt converge.

D'après le th. d'intégration terme à terme, on peut alors intervertir
∑

et
∫

:

f(x) = 2

∫ +∞

0

(
+∞∑
k=0

sin(xt)e−(2k+1)t

)
dt = 2

+∞∑
k=0

∫ +∞

0

sin(xt)e−(2k+1)t dt = 2

+∞∑
k=0

x

x2 + (2k + 1)2
d'après la question

I.3.b.

Q 11. Pour tout n ∈ N et x ⩾ 0, u′
n(x) = 2

(2n+ 1)2 − x2

(x2 + (2n+ 1)2)2
d'où on en déduit les variations de |un| = un sur [0,+∞[

et en particulier sa valeur maximale, atteinte en 2n+ 1.

Donc pour tout n ∈ N, ∥un∥[0,+∞[
∞ = un(2n + 1) =

1

2n+ 1
. Par comparaison de séries à termes positifs, la série∑

∥un∥[0,+∞[
∞ diverge, donc la série de fonctions

∑
un ne converge pas normalement sur R+.

Q 12.

a) D'après la question II 10, la série
∑

un converge simplement sur R+, donc la suite (un) converge simplement vers
0 sur R+.

De plus, ∥un∥[0,+∞[
∞ = un(2n+ 1) =

1

2n+ 1
−−−−−→

n→+∞
0 donc la suite (un) converge uniformément vers 0 sur R+.

b) Pour tout x ⩾ 0, vn(x) =
2nx

x2 + (2n+ 1)2
∼

n→+∞

2nx

(2n+ 1)2
∼

n→+∞

x

2n
−−−−−→

n→+∞
0, donc la suite de focntions (vn)

converge simplement vers 0 sur R+.

De plus, ∥vn∥[0,+∞[
∞ = n∥un∥[0,+∞[

∞ =
n

2n+ 1
ne tend pas vers 0 quand n → +∞, donc la suite (vn) ne converge

pas uniformément vers 0 sur R+.

c) Pour tout n ∈ N et x ⩾ 0,
+∞∑

k=n+1

uk(x) ⩾
2n∑

k=n+1

uk(x) car pour tout k ∈ N, uk(x) ⩾ 0.
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Et pour tout k ∈ [[n+ 1, 2n]], uk(x) ⩾ u2n(x) donc
2n∑

k=n+1

uk(x) ⩾ n× u2n(x) =
1

2
v2n(x) ⩾ 0.

Si la série
∑

un converge uniformément sur R+, alors la suite des restes partiels

(
+∞∑

k=n+1

uk(x)

)
converge unifor-

mément vers 0 sur R+, or par l'encadrement précédent, on a

∥∥∥∥∥
+∞∑

k=n+1

uk

∥∥∥∥∥
∞

⩾
1

2
∥v2n∥∞ donc lim

n→+∞
∥v2n∥∞ = 0, ce

qui signi�e que la suite (v2n) converge uniformément vers 0, ce qui est faux d'après l'étude précédente.

Donc la série
∑

un ne converge pas uniformément sur R+.
Q 13.

a) Simple calcul : u′
n(x) = 2

(2n+ 1)2 − x2

(x2 + (2n+ 1)2)2
donc |u′

n(x)| = 2

∣∣(2n+ 1)2 − x2
∣∣

(x2 + (2n+ 1)2)2
⩽ 2

(2n+ 1)2 + x2

(x2 + (2n+ 1)2)2
=

2

x2 + (2n+ 1)2

par inégalité triangulaire.

b) Alors on en déduit : pour tout n ∈ N, pour tout x ∈ R+, |u′
n(x)| ⩽

2

(2n+ 1)2
.

Or la série
∑
n⩾0

2

(2n+ 1)2
est convergente. Donc la série

∑
u′
n est normalement convergente sur [0,+∞[.

Comme les fonctions un sont toutes de classe C1 et que f est la somme de la série
∑

un (convergence simple),

alors d'après le th. de dérivation sous le signe
∑

, f est de classe C1 sur R+ et pour tout x ∈ R+, f
′(x) =

2

+∞∑
n=0

(2n+ 1)2 − x2

(x2 + (2n+ 1)2)2
.

c) En particulier, f ′(0) = 2

+∞∑
n=0

1

(2n+ 1)2
= S1 =

π2

4
d'après I.5.c.

Q 14.

a) La fonction u 7→ 1

x2 + u2
est décroissante sur R+, or pour tout n ⩾ 1, [2n− 1, 2n+ 1] ⊂ R+,

donc
∫ 2n+1

2n−1

1

x2 + (2n+ 1)2
du ⩽

∫ 2n+1

2n−1

1

x2 + u2
du, c'est-à-dire

2

x2 + (2n+ 1)2
⩽
∫ 2n+1

2n−1

1

x2 + u2
du.

b) On additionne les inégalités précédentes :

+∞∑
n=1

2

x2 + (2n+ 1)2
⩽

+∞∑
n=1

∫ 2n+1

2n−1

1

x2 + u2
du =

∫ +∞

1

1

x2 + u2
du, donc en ajoutant le premier terme de la somme

(pour n = 0), qui vaut
2

x2 + 1
, on obtient f(x) ⩽ x

(
2

1 + x2
+

∫ +∞

1

1

x2 + u2
du

)
.

D'après la question I.1. on a alors f(x) ⩽ x

(
2

1 + x2
+

arctanx

x

)
=

2x

x2 + 1
+ arctanx.

Or
2x

x2 + 1
⩽ 1 et arctanx ⩽

π

2
, donc il vient f(x) ⩽ 1 +

π

2
.

Le signe de f(x) est évident d'après son écriture sous forme de série (question 10.).
Q 15.

a) Cours : sinx =

+∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1.

b) Soit x ∈ [0, 1[. Alors f(x) =
∫ +∞

0

∑+∞
n=0

(−1)n

(2n+1)! (xt)
2n+1

sh t

 dt =

∫ +∞

0

(
+∞∑
n=0

(−1)n

(2n+ 1)!

t2n+1

sh t
x2n+1

)
dt

� Pour tout n ∈ N, la fonction t 7→ (−1)n

(2n+ 1)!

t2n+1

sh t
x2n+1 est intégrable sur ]0,+∞[ d'après la question I.4.a.

� Et pour tout n ∈ N,
∫ +∞

0

∣∣∣∣ (−1)n

(2n+ 1)!

t2n+1

sh t
x2n+1

∣∣∣∣ dt = x2n+1

(2n+ 1)!

∫ +∞

0

t2n+1

sh t
dt =

x2n+1

(2n+ 1)!
S2n+1,

donc
∫ +∞

0

∣∣∣∣ (−1)n

(2n+ 1)!

t2n+1

sh t
x2n+1

∣∣∣∣ dt ⩽ x2n+1

(2n+ 1)!
× 4(2n+ 1)! = 4x2n+1 d'après I.6.b.

Comme 0 ⩽ x < 1, la série
∑

4x2n+1 converge, donc par comparaison de séries à termes positifs, la série∑∫ +∞

0

∣∣∣∣ (−1)n

(2n+ 1)!

t2n+1

sh t
x2n+1

∣∣∣∣ dt converge.
4



D'après le th. d'intégration terme à terme, on a donc f(x) =

+∞∑
n=0

(
(−1)n

(2n+ 1)!
S2n+1

)
x2n+1.

La fonction f est donc développable en série entière sur [0,+1[, et donc sur ]− 1,+1[, car l'ouvert de convergence
d'une série entière est toujours symétrique par rapport à 0.

De plus, comme 2(2n+ 1)! ⩽ S2n+1, alors pour x > 1,

∣∣∣∣ (−1)n

(2n+ 1)!
S2n+1

∣∣∣∣x2n+1 ⩾ 2, donc la série entière précédente

diverge grossièrement quand x > 1.

Le rayon de convergence est donc exactement égal à 1.

Q 16. Exercice fait en cours (voir chapitre Intégrales généralisées).

Q 17. En +∞, il n'y a pas de forme indéterminée : lim
+∞

g = 0.

g(t) =
t− sh t

t sh t
∼

t→0

− t3

6

t2
=

−t

6
−−−→
t→0

0, car le d.l. de sh en 0 à l'ordre 3 est sh t = t+
t3

6
+ o(t3).

On signale d'abord que g′ est continue sur ]0,+∞[.

Pour tout t > 0, g′(t) =
− ch(t)

sh(t)2
+

1

t2
: comme ch t ∼

t→+∞
sh t ∼

t→+∞

et

2
, on en déduit que g′(t) ∼

t→+∞

1

t2
donc g′ est

intégrable sur [1,+∞[.

En utilisant les d.l. de ch et sh en 0 à l'ordre 4, on calcule de même lim
0

g′ =
−1

6
, donc on a une fausse singulatité

en 0 : g′ est donc intégrable sur ]0, 1].

Au total, g′ est intégrable sur ]0,+∞[.

Q 18.

a) Sous réserve de convergence, pour tout x > 0, f(x) =
∫ +∞

0

sin(xt)

t
dt+

∫ +∞

0

g(t) sin(xt) dt.

Or par changement de variable u = xt,
∫ +∞

0

sin(xt)

t
dt =

∫ +∞

0

sin(u)

u
du =

π

2
converge, donc la linéarité de

l'intégrale est utilisable, ce qui autorise le calcul précédent.

Donc f(x) =
π

2
+

∫ +∞

0

g(t) sin(xt) dt.

b) Sous réserve de convergence, on e�ectue une intégration par parties :∫ +∞

0

g(t) sin(xt) dt =

[
−cos(xt)

x
g(t)

]+∞

t=0

+

∫ +∞

0

g′(t)
cos(xt)

x
dt

Cette intégration par parties est licite car le crochet de variations vaut 0 grâce aux calculs des limites de g en 0 et
+∞.

Il vient donc

∣∣∣∣∫ +∞

0

g(t) sin(xt) dt

∣∣∣∣ = ∣∣∣∣∫ +∞

0

g′(t)
cos(xt)

x
dt

∣∣∣∣ ⩽ ∫ +∞

0

∣∣∣∣g′(t)cos(xt)x

∣∣∣∣ dt ⩽ 1

x

∫ +∞

0

|g′(t)| dt

donc par encadrement, lim
x→+∞

∫ +∞

0

g(t) sin(xt) dt = 0, i.e. f a pour limite
π

2
en +∞.
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