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Un corrigé

Partie I

1. Si a = b alors a0 = b0 = a.
Si an = bn = a alors an+1 = bn+1 (en particulier car

√
a2 = |a| = a).

On en déduit par récurrence que

Si a = b alors (an) et (bn) sont constantes égales à a

2. Soient x, y ≥ 0. On a 0 ≤ (
√
x−√y)2 = x− 2

√
xy + y. On en déduit que

∀x, y ≥ 0,
√
xy ≤ x+ y

2

3. Une récurrence immédiate montre que ∀n, an, bn ≥ 0. Avec la question précédente, on a donc
∀n, an+1 ≤ bn+1 ou encore

∀n ∈ N∗, an ≤ bn
Soit n ≥ 1. On a an+1 =

√
anbn ≥

√
a2n = an et bn+1 ≤ 2bn

2 = bn. Ceci montre que

(an)n∈N∗ crôıt et (bn)n∈N∗ décrôıt

Comme an ≤ bn pour n ≥ 1, les suites sont donc dans [a1, b1] à partir du rang 1 et donc bornées
(bornée équivaut à bornée à partir d’un certain rang).

(an)n∈N et (bn)n∈N sont bornées

4. Par théorème de limite monotone, les suites sont convergentes à limite `a et `b dans [a1, b1] et
donc > 0. En pasant à la limite dans la relation de récurrence pour (bn), on obtient `a = `b.

(an)n∈N et (bn)n∈N sont convergentes de même limite

5. Notons (a′n) et (b′n) les suites définies par les mêmes relations de récurrence mais avec a′0 = b et
b′0 = a. On a alors a′1 = a1 et b′1 = b1. Comme les suites sont récurrentes d’ordre 1, elles sont
égale à partir du rang 1 et donc de même limite.
De même, Notons (αn) et (β′n) les suites définies par les mêmes relations de récurrence mais avec
α0 = λa0 et β0 = λb. On a alors α1 = λa1 et β1 = λb1 puis, par récurrence simple, αn = λan et
βn = λbn pour tout n. Finalement,

M(b, a) = M(a, b) et ∀λ > 0, M(λa, λb) = λM(a, b)

6. On utilise ceci avec λ = 1/a > 0 : 1
aM(a, b) = M(1, b/a) = f(b/a). On a donc

M(a, b) = af

(
b

a

)
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Partie II

7. t 7→ 1√
(a2+t2)(b2+t2)

est continue sur R et équivalent au voisinage des infinis à 1/t2 et donc

intégrable sur de tels voisinages. La fonction est donc intégrable sur R. A fortiori,

I(a, b) et J(a, b) existent

La fonction ci-dessus étant paire, son intégrale sur R+ vaut celle sur R− (par exemple en effec-
tuant le changement de variable x = −t). Ainsi, par relation de Chasles

J(a, b) = 2I(a, b)

8. s 7→ 1
2

(
s− ab

s

)
est de classe C1 sur R de dérivée 1

2

(
1 + ab

s2

)
qui ne s’annule pas. C’est donc une

bonne fonction de changement de variable. Posons t = 1
2

(
s− ab

s

)
. On a(

a+ b

2

)2

+ t2 =

(
a+ b

2

)2

+
1

4s2
(s2 − ab)2

=
1

4s2
(
s2(a+ b)2 + (s2 − ab)2

)
=

1

4s2
(
s4 + (a2 + b2)s2 + a2b2

)
=

1

4s2
(s2 + a2)(s2 + b2)

(
√
ab)2 + t2 = ab+

1

4s2
(s2 − ab)2

=
1

4s2
(s2 + ab)2

Par ailleurs, avec les conventions d’écriture usuelles

dt =
ds

2

(
1 +

ab

s2

)
=

ds

2s2
(s2 + ab)

On en déduit que

J

(
a+ b

2
,
√
ab

)
=

∫ +∞

−∞

ds√
a2 + s2)(b2 + s2)

= J(a, b)

et donc, avce la question précécente

J

(
a+ b

2
,
√
ab

)
= 2I(a, b)

9. On prouve ce résultat par récurrence.

- Initialisation : c’est vrai pour n = 0 car a0 = a et b0 = b.

- Hérédité : si le résultat est vrai au rang n alors comme la question précédente donne

2I(an+1, bn+1) = J(an+1, bn+1) = 2I(an, bn)

le résultat reste vrai au rang n+ 1.

∀n ∈ N, I(an, bn) = I(a, b)
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10. On veut passer à la limite ci-dessus et, pour cela, utiliser un théorème d’interversion limite-
intégrale. On propose le théorème de convergence dominée.

- fn : t 7→ 1√
a2n+t

2)(b2n+t
2)

est une fonction continue sur R+ pour tout entier n ∈ N.

- La suite (fn) converge simplement sur R vers t 7→ 1√
a2+t2)(b2+t2)

elle même continue sur

R+.

- Comme pour tout n ≥ 1 on a an, bn ≥ a1 > 0 (partie I) on en déduit que

∀n ≥ 1, ∀t ∈ R, |fn(t)| ≤ 1

a21 + t2

Le majorant est intégrable sur R (et indépendant de n).

Le théorème s’applique et donne

I(M(a, b),M(a, b)) = I(a, b)

11. On remarque que

∀α > 0, I(α, α) =

∫ +∞

0

dt

t2 + α2
=

[
1

α
arctan

(
t

α

)]+∞
0

=
π

2α

Ainsi, avec la question 10,

I(a, b) =
π

2M(a, b)

ou encore

M(a, b) =
π

2I(a, b)

Partie III

12. s 7→ x/s est de classe C1 sur R+∗ et sa dérivée s 7→ −x/s2 ne s’annule pas. C’est donc une bonne
fonction de changement de variable. On obtient∫ √x

0

dt√
(1 + t2)(x2 + t2)

=

∫ √x
+∞

(−x/s2) ds√
(1 + x2/s2)(x2 + x2/s2)

=

∫ +∞

√
x

ds√
(s2 + x2)(1 + s2)

Par relation de Chasles, on a

I(1, x) =

∫ √x
0

dt√
(1 + t2)(x2 + t2)

+

∫ +∞

√
x

ds√
(s2 + x2)(1 + s2)

On conclut ainsi que

∀x > 0, I(1, x) = 2

∫ √x
0

1√
1 + t2

√
x2 + t2

dt

13. Remarquons que

∀t ≥ 0,

∣∣∣∣ 1√
1 + t2

√
x2 + t2

− 1√
x2 + t2

∣∣∣∣ =

√
1 + t2 − 1√

1 + t2
√
x2 + t2

≤
√

1 + t2 − 1√
x2 + t2
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Par convexité de y 7→ √y (courbe en dessous de la tangente en y = 1) on a aussi

∀y ≥ −1,
√

1 + y ≤ 1 +
y

2

Ainsi,

∀t ∈ [0,
√
x],

∣∣∣∣ 1√
1 + t2

√
x2 + t2

− 1√
x2 + t2

∣∣∣∣ ≤ x

2
√
x2 + t2

On intégre cette inégalité entre 0 et
√
x (aucun problème d’existence) pour obtenir∣∣∣∣∣I(1, x)− 2

∫ √x
0

1√
x2 + t2

dt

∣∣∣∣∣ ≤ 2

∫ √x
0

∣∣∣∣ 1√
1 + t2

√
x2 + t2

− 1√
x2 + t2

∣∣∣∣ dt ≤ x ∫
√
x

0

1√
x2 + t2

On en conclut donc que

I(1, x)− 2
∫ √x
0

1√
x2+t2

dt est négligeable devant 2
∫ √x
0

1√
x2+t2

dt quand x tend vers 0+

14. La dérivée de t 7→ ln(t +
√

1 + t2) sur R est t 7→ 1√
1+t2

. Par changement de variable linéaire

s = t/x, on. a ∫ √x
0

1√
x2 + t2

dt =

∫ 1/
√
x

0

ds

1 + s2
=
[
ln(s+

√
1 + s2)

]1/√x
0

et finalement,

∀x > 0,

∫ √x
0

1√
x2 + t2

dt = ln

(
1√
x

+

√
1 +

1

x

)

15. On a

ln

(
1√
x

+

√
1 +

1

x

)
= − ln(x)

2
+ ln(1 +

√
x+ 1)

qui équivaut à − ln(x)/2 quand x→ 0+.

Or, d’après la question 13, quand x→ 0

I(1, x) ∼
x→0

2

∫ √x
0

1√
x2 + t2

dt

On en déduit avec la question 14 que

I(1, x) ∼
x→0
− ln(x)

Comme f(x) = M(1, x) = π
2I(1,x) , on a ainsi

f(x) ∼
x→0+

− π

2 ln(x)

16. On a (avec la partie I)

f

(
1

x

)
= M

(
1,

1

x

)
=

1

x
M(x, 1) =

1

x
M(1, x) =

1

x
f(x)

Quand x→ +∞, 1
x → 0+ et la question précédente donne alors

f (x) = xf

(
1

x

)
∼

x→+∞
− πx

2 ln(1/x)

c’est-à-dire
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f(x) ∼
x→+∞

πx

2 ln(x)

17. On sait que

∀x > 0, f(x) = M(1, x) =
π

2I(1, x)

On va alors prouver que x 7→ I(1, x) est continue sur R+∗ avec le théorème de continuité des
intégrales à paramètres.

- ∀x > 0, t 7→ 1√
(1+t2)(x2+t2)

est continue sur R+∗.

- ∀t > 0, x 7→ 1√
(1+t2)(x2+t2)

est continue sur R+∗.

- ∀[a, b] ⊂ R+∗, ∀x ∈ [a, b], ∀t > 0,

∣∣∣∣ 1√
(1+t2)(x2+t2)

∣∣∣∣ ≤ 1√
(1+t2)(a2+t2)

. On a vu en question 7

que le majorant est intégrable sur R+.

Le théorème évoqué donne x 7→ I(1, x) ∈ C0(R+∗) est ainsi (théorèmes d’opération)

f ∈ C0(R+∗)

18. La question 15 donne f(x)→ 0 quand x→ 0+ et donc

On prolonge f par continuité en posant f(0) = 0

On a aussi
f(x)− f(0)

x− 0
∼

x→0+
− π

2x ln(x)
→ +∞

Le graphe de f présente au point d’abscisse 0 une demi-tangente verticale

19. Avec la question 16,
lim

x→+∞
xf(x) = 0

Au voisinage de +∞, on a ainsi une direction asymptotique horizontale. Comme f est de limite
infinie en +∞ (toujours la question 16)

Le graphe de f présente en +∞ une branche parabolique horizontale

20. L’expression de I(1, x) montre que si 0 ≤ x ≤ y, I(1, x) ≥ I(1, y). x 7→ I(1, x) est décroissante sur

R+ et à valeurs > 0. Ainsi, avec l’expression rappelée en question 17, f est croissante sur R+ .

Partie IV

21. Avec les questions 7 et 8,

I(1, x) = I

(
1 + x

2
,
√
x

)
On utilise alors la question 5 avec λ = 1+x

2 :

M

(
1 + x

2
,
√
x

)
=

1 + x

2
M

(
1,

2
√
x

1 + x

)
On conclut alors avec la question 11 (utilisée deux fois) que
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I(1, x) =
2

1 + x
I

(
1,

2
√
x

1 + x

)
22. (a) On a wn+1 = h(wn) avec h(t) = 2t

1+t . Comme h(R+) ⊂ R+ et w0 ∈ R+,

∀n ∈ N, wn ≥ 0

h est de classe C1 sur R+ et ∀t ≥ 0, h′(t) = 2
1+t2

≥ 0. Ainsi h est croissante sur R+. Or,

∀n ∈ N∗, wn+1 − wn = h(wn)− h(wn−1)

et la suite (wn+1 − wn) est de signe constant. Mais, w1 − w0 = x(1−x)
1+x et donc

- Si x ≥ 1, (wn) est décroissante et minorée (par 0) donc elle converge. Comme [1,+∞[
est stable par h, on a en fait ∀n, wn ≥ 1. La limite ` de (wn) est ≥ 1 et c’est (par
continuité de h) un point fixe de h et donc égal à 0 ou 1. Ainsi, ` = 1.

- Si x ∈]0, 1], la suite est de même croissante et convergente vers ` ∈ [x, 1] ce qui implique
` = 1.

(wn) converge vers 1

(b) On procède par récurrence.

- Initialisation : la question 21 donne I(1, x) = 2
1+xI(1, w1), ce qui correspond à la formule

pour n = 0.

- Hérédité : supposons le résultat vrai à un rang n ≥ 0. La question 21 donne

I(1, wn+1) =
1

2 + wn+1
I(1, wn+2)

Par le résultat au rang n, on déduit celui au rang n+ 1.

∀n ∈ N, I(1, x) = I(1, wn+1)

n∏
k=0

2

1 + wk

(c) On a vu en question 17 que x 7→ I(1, x) est continue sur R+. Ainsi, I(1, wn+1)→ I(1, 1) = π
2 .

On en déduit que (pn) converge et que

lim
n→+∞

pn =
π

2I(1, x)

En notant ` la limite de (pn), on a `I(1, x) = π
2

Partie V

23. Soit x ∈] − 1, 1[. Pour tout t ∈ R, on a donc |x sin(t)| < 1 et donc 1 − x2 sin2(t) > 0. Ainsi,
t 7→ 1√

1−x2 sin2(t)
est continue sur le segment [0, π/2] et son intégrale sur ce segment existe.

K est bien définie sur ]− 1, 1[
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24. t 7→ arctan(t) est de classe C1 sur R+∗ à dérivée ne s’annulant pas et c’est donc un bon change-
ment de variable. Il donne

I(x) =

∫ +∞

0

dt√
(1 + t2)(x2 + t2)

=

∫ π/2

0

1/ cos2(s)√
(1 + tan2(s))(x2 + tan2(s))

ds

=

∫ π/2

0

ds√
x2 cos2(s) + sin2(s)

∀x > 0, I(1, x) =

∫ π
2

0

dt√
x2 cos2(t) + sin2(t)

25. Comme sin2 = 1− cos2, on a donc

I(1, x) =

∫ π
2

0

dt√
1− (1− x2) cos2(t)

Le changement affine u = π/2− t donne alors

I(1, x) =

∫ π
2

0

du√
1− (1− x2) sin2(u)

Quand x ∈]0, 1[, 1− x2 > 0 et est égal au carré de sa racine carrée et ainsi

∀x ∈]0, 1[, I(1, x) = K(
√

1− x2)

26. (a) On a

Wn −Wn+1 =

∫ π/2

0
sin2n(t)(1− sin2(t)) dt =

∫ π/2

0
cos(t) sin2n(t) cos(t) dt

u′(t) = cos(t) sin2n(t) se primitive en u(t) = 1
2n+1 sin2n+1(t) et v(t) = cos(t) se dérive en

v′(t) = − sin(t). u, v ∈ C1([0, π/2]) et on peut intégrer par parties pour obtenir

Wn −Wn+1 = [u(t)v(t)]
π/2
0 −

∫ π/2

0
u(t)v′(t) dt =

1

2n+ 1
Wn+1

On conclut que

∀n ∈ N, Wn+1 =
2n+ 1

2n+ 2
Wn

(b) On prouve le résultat par récurrence.

- Initialisation : W0 = π
2 et le résultat est vrai au rang 0.

- Hérédité : on suppose le résultat vrai au rang n. Avec la question précédente, et en
écrivant 2n+1

2n+2 = (2n+2)(2n+1)
22(n+1)2

,

Wn+1 =
2n+ 1

2n+ 2

(2n)!

22n+1(n!)2
π =

(2n+ 2)!

22n+3((n+ 1)!)2
π

∀n ∈ N, Wn =
(2n)!

22n+1(n!)2
π
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27. Le cours nous dit que g : t 7→ 1√
1−t est DSE de rayon 1. Son développement est alors donné

par Taylor :

∀t ∈]− 1, 1[, g(t) =
∞∑
n=0

g(n)(0)

n!
tn

On montre par récurrence que

g(n)(t) =

n−1∏
k=0

2k + 1

2
(1− t)−

2n+1
2 =

(2n)!

22nn!
(1− t)−

2n+1
2

∀t ∈]− 1, 1[, g(t) =

∞∑
n=0

(2n)!

22n(n!)2
tn

28. Il nous suffit alors d’appliquer l’égalité en (x sin(t))2 (qui est dans ]− 1, 1[) :

∀x ∈]− 1, 1[, ∀t ∈ R,
1√

1− x2 sin2(t)
=
∞∑
n=0

(2n)!

22n(n!)2
x2n sin2n(t)

29. A ce niveau, on a

∀x ∈]− 1, 1[, K(x) =

∫ π/2

0

∞∑
n=0

(2n)!

22n(n!)2
x2n sin2n(t) dt

On veut intervertir les symboles. On va utiliser le théorème de convergence dominée pour les
séries de fonctions. Ici, x ∈]− 1, 1[ est fixé.

- fn : t 7→ (2n)!
22n(n!)2

x2n sin2n(t) est le terme général d’une série de fonctions continues qui

converge simplement sur [0, π/2] vers t 7→ 1√
1−x2 sin2(t)

elle même continue.

- Comme les fonctions sont positives,

∀t ∈ [0, π/2], ∀k ∈ N,

∣∣∣∣∣
n∑
k=0

fk(t)

∣∣∣∣∣ ≤
∞∑
k=0

fk(t) =
1√

1− x2 sin2(t)

Le majorant est continu sur le segment [0, π/2] et donc intégrable sur ce segment.

Le théorème s’applique et donne

K(x) =

∞∑
n=0

(2n)!

22n(n!)2
x2n

∫ π/2

0
sin2n(t) dt =

∞∑
n=0

(2n)!

22n(n!)2
x2nWn

Il reste à utiliser l’expression de Wn pour conclure que

∀x ∈]− 1, 1[, K(x) =
π

2

∞∑
n=0

((2n)!)2

16n(n!)4
x2n

30. On a

M(3, 5) = M(5, 3) = 5M(1, 3) =
5π

2

1

I(1, 3/5)
=

5π

2

1

K(4/5)

On déduit M(3, 5) de K(4/5) dont on a une expression sous forme de somme de série numérique.
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