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Un corrigé

Partie I

1.

Sia=>balors ag = by = a.
Si ap, = b, = a alors a,4+1 = by41 (en particulier car Va? = |a| = a).
On en déduit par récurrence que

’Si a = b alors (ay,) et (by,) sont constantes égales a a‘

. Soient z,y > 0. On a 0 < (vz — \/y)? =z — 2,/Ty + y. On en déduit que

Vay >0, Vi< Y

. Une récurrence immédiate montre que Vn, ay,,b, > 0. Avec la question précédente, on a donc

Vn, apt1 < byl ou encore
Vn € N*, a, < b,

Soit n > 1. On a apt+1 = Vapb, > /a2 = ay et byy1 < 2‘% = b,. Ceci montre que

’(an)neN* croit et (by)nen= décroit‘

Comme a,, < b, pour n > 1, les suites sont donc dans [a1,b;1] & partir du rang 1 et donc bornées
(bornée équivaut a bornée a partir d’un certain rang).

’ (an)nen €t (bn)nen sont bornées‘

. Par théoréme de limite monotone, les suites sont convergentes a limite ¢, et ¢, dans [a1,b;] et

donc > 0. En pasant a la limite dans la relation de récurrence pour (by,), on obtient £, = £p.

’ (an)nen et (bn)nen sont convergentes de méme limite‘

Notons (al,) et (b),) les suites définies par les mémes relations de récurrence mais avec af, = b et
o = a. On a alors a] = a; et b} = b;. Comme les suites sont récurrentes d’ordre 1, elles sont
égale a partir du rang 1 et donc de méme limite.

De méme, Notons (a,) et (8],) les suites définies par les mémes relations de récurrence mais avec
ag = Aag et By = Ab. On a alors ay = Aaq et B = Aby puis, par récurrence simple, o, = Aa,, et
Bn = Aby, pour tout n. Finalement,

| M(b,a) = M(a,b) et YA >0, M(Xa,\b) = AM(a,b) |

. On utilise ceci avec A =1/a > 0: 1M (a,b) = M(1,b/a) = f(b/a). On a donc

M(a,b):af<b>

a




Partie 11

7.t ———L _ est continue sur R et équivalent au voisinage des infinis & 1/¢? et donc
(a2 +12)(b2+t2)

intégrable sur de tels voisinages. La fonction est donc intégrable sur R. A fortiori,

’I(a, b) et J(a,b) existent‘

La fonction ci-dessus étant paire, son intégrale sur R* vaut celle sur R~ (par exemple en effec-
tuant le changement de variable = —t). Ainsi, par relation de Chasles

| J(a,b) = 2I(a,b)|

8 s+ 3 (s — %b) est de classe C! sur R de dérivée 1 5 ( 2) qu1 ne s’annule pas. C’est donc une
bonne fonction de changement de variable. Posons ¢ = % (s ) On a
a+0\?> a+0\> 1, )
1
= 4732 (32(a + b)2 + (32 — ab)g)
1
= iz (s'+ (a® + b%)s* + a®b?)
1

Vab)? +#* = ab—l—LSQ—abQ
s

Par ailleurs, avec les conventions d’écriture usuelles
ds ab ds , o

On en déduit que

—+00
J (“ +o \/ab> - ds = J(a,b)
2 oo /a2 + s2)(b% + s2)

et donc, avce la question précécente

J (a;b,\@> — 21(a,b)

9. On prouve ce résultat par récurrence.
- Initialisation : c¢’est vrai pour n = 0 car ag = a et bg = b.

- Hérédité : si le résultat est vrai au rang n alors comme la question précédente donne

2I(an+17 bn+1) = J(anJrla bn+1) = QI(CLn, bn)

le résultat reste vrai au rang n + 1.

\¥n €N, I(an,by) = I(a,b)|




10. On veut passer a la limite ci-dessus et, pour cela, utiliser un théoréeme d’interversion limite-

intégrale. On propose le théoreme de convergence dominée.
- fo : t+— ————— est une fonction continue sur R* pour tout entier n € N.

a? +t2) (b2 +t2)
1

— elle méme continue sur
a?+t2)(b2+t2)

- La suite (f,) converge simplement sur R vers ¢ —
RT.
- Comme pour tout n > 1 on a ay,, b, > a; > 0 (partie I) on en déduit que

1

Vn>1, W eR, |fo(t)] < ———
n> 0] <

Le majorant est intégrable sur R (et indépendant de n).

Le théoreme s’applique et donne

[ 1(M(a,b), M(a,b)) = I(a,b)|

11. On remarque que

+00 1 +o0
Vo >0, I(a,a) = / % = [ arctan <t>} -
0 t“ 4+ « o' a)lo 200

Ainsi, avec la question 10,

T
I(a,b) = —
(@5 = 33t
ou encore
T
M(a,b) = 51

Partie II1

12. s+ x/s est de classe C! sur R™* et sa dérivée s — —x/s? ne s’annule pas. C’est donc une bonne
fonction de changement de variable. On obtient

/‘/5 dt B Ve (—x/s%) ds
0 VAT 2) i /(1 +22/52) (a2 + 22/s2)

oo ds
N /\/E V(s +2?)(1+ s2)

Par relation de Chasles, on a

VE dt e ds
1(1,33):/0 \/(1+t2)(x2+t2)+/ﬁ V(s +2?) (1 + s?)

On conclut ainsi que

1

dt
V14 t2Va? + 2

NG
Va > 0, I(l,x)zQ/
0

13. Remarquons que

_ Vi1 VI+# -1
</1+t2,/x2+t2_ ‘/$2+t2

1 1
vt > 0, —
VIF2V22 12 Va2 + 12

3



14.

15.

16.

Par convexité de y +— ,/y (courbe en dessous de la tangente en y = 1) on a aussi

Vy > —1, 1+y§1+%

Ainsi,
1 _ 1 < x
+2V2+ 12 Vol + 2T 2V 12
On intégre cette inégalité entre 0 et \/x (aucun probléme d’existence) pour obtenir
Vo 1 Vi Ve 1
I(l,:p)—2/0 Wdt <2/0 dt<:v/0 \/ﬁ

On en conclut donc que

vt € [0, V],

1
VI+82Va2 +12 Va? 4+ 2

I(1,0) =2 [Y*

dt quand z tend vers 0"

1 VT
N Ve

La dérivée de t — In(t + V1 +¢2) sur R est ¢ — \/11+T Par changement de variable linéaire

s=t/x, on. a

1/Vx ds

/ﬁ = [ln(s +v1+ 52)} e
o Voo ;

et finalement,

Vo >0 /ﬁ ! dt =1 1+ 1+1
x , ———dt=In| — —
0 VB NE v

1 1\  In(x)

qui équivaut & —In(z)/2 quand z — 07.

On a
(1+Vz+1)

Or, d’apres la question 13, quand z — 0

I(l,z) ~ 2

it / \/a:2+t2

On en déduit avec la question 14 que

I(1,z) ~ —In(z)

z—0

Comme f(z) = M(1,z) = ﬁ, on a ainsi

m
r) ~ —
z—0+  2In(z)

On a (avec la partie I)

f <i> M (1, i) _ %M(@; )= L1, = %f(a:)

x

Quand z — 400, % — 0T et la question précédente donne alors

@) =xf <1> o—rtoo ‘ﬁfm

c’est-a-dire



X
z—+o0 21n(x)

f(x)

17. On sait que
T

Ve >0, f(x)=M(,z) = (.

On va alors prouver que x — I(1,z) est continue sur R™ avec le théoréme de continuité des
intégrales a parametres.

- -1
Vr >0, t— B
I S
(14¢2) (22 +12)

est continue sur R1*.

-VtE>0, x> est continue sur RT*.

- V]a,b] C R™, Vz € [a,b], Vt > 0, . On a vu en question 7

1 < 1
V@+2)(22482) | T \/(1+82) (a2 +12)
que le majorant est intégrable sur RT.

Le théoréme évoqué donne x + I(1,x) € CO(RT*) est ainsi (théorémes d’opération)

fe ' ®rR™)

18. La question 15 donne f(x) — 0 quand z — 0" et donc

’On prolonge f par continuité en posant f(0) = ()‘

On a aussi
f(x) — f(0) ™

~ e
z—0 a0t 2zln(x) oo

Le graphe de f présente au point d’abscisse 0 une demi-tangente verticale

19. Avec la question 16,
lim zf(z) =0

T—r+00

Au voisinage de 400, on a ainsi une direction asymptotique horizontale. Comme f est de limite
infinie en +oo (toujours la question 16)

’Le graphe de f présente en +oo une branche parabolique horizontale‘

20. L’expression de I(1,z) montre quesi0 < z <y, I(1,z) > I(1,y). x — I(1, z) est décroissante sur

R et & valeurs > 0. Ainsi, avec I'expression rappelée en question 17, ’ f est croissante sur R |.

Partie IV
21. Avec les questions 7 et 8,
1
I(1,2) = 1( ;x\/}>
On utilise alors la question 5 avec A = HTx :
1+2 1+z 2\
M = M1
< 2 ﬁ) 2 ( 14 x>

On conclut alors avec la question 11 (utilisée deux fois) que



I(1,2) = —2 I (1, 2\/5)

1+

22. (a) On a wyy1 = h(w,) avec h(t) = 4. Comme h(RT) C R et wy € RT,

+t

VneN, w, >0

h est de classe CT sur R+ et Vt >0, h/(t) = 5 +t2 > 0. Ainsi h est croissante sur R*. Or,

Vn € N*) w41 — wy = h(wy) — h(wp—1)
z(1-x)
14z
- Siz > 1, (wy,) est décroissante et minorée (par 0) donc elle converge. Comme [1, +00]

est stable par h, on a en fait Vn, w, > 1. La limite ¢ de (w,) est > 1 et c’est (par
continuité de h) un point fixe de h et donc égal a 0 ou 1. Ainsi, £ = 1.

et donc

et la suite (wp4+1 — wy,) est de signe constant. Mais, wy — wg =

- Siz €]0, 1], la suite est de méme croissante et convergente vers £ € [z, 1] ce qui implique
f=1.

’ (wy,) converge vers 1 ‘

(b) On procede par récurrence.

- Initialisation : la question 21 donne (1, ) = H%I (1,w1), ce qui correspond & la formule
pour n = 0.

- Hérédité : supposons le résultat vrai a un rang n > 0. La question 21 donne

1

. Iw
24 Wn+1 ( n+2)

I(la wn+1) =

Par le résultat au rang n, on déduit celui au rang n + 1.

n

VneN, I(1,x) =

(¢c) Onavuen question 17 que x +— I(1,z) est continue sur R*. Ainsi, I(1, wp41) — 1(1,1) = 7.
On en déduit que (p,,) converge et que

. T
im =
n—>+oopn 21(1,x)

En notant £ la limite de (p,), on a ¢I(1,2) = §

Partie V

23. Soit = €] — 1,1[. Pour tout ¢ € R, on a donc |zsin(t)| < 1 et donc 1 — z%sin?(¢) > 0. Ainsi,

t— - 21 0 est continue sur le segment [0, 7/2] et son intégrale sur ce segment existe.
—X“ sin

K est bien définie sur | — 1, 1[‘




24. t + arctan(t) est de classe O sur RT™* & dérivée ne s’annulant pas et c’est donc un bon change-
ment de variable. Il donne

I(z) =
0 \/ 14 t2) (22 4 t2)
l/cos (s)
\/ 1 + tan?(s)) (22 + tan?(s))
/ N C082 ) + sin?(s)
Vo >0, I(1,z)

/ V2 cos2 ) + sin®(t)

2

25. Comme sin? = 1 — cos?, on a donc

dt
V1= (1 —22)cos?(t)

Le changement affine uw = 7/2 — t donne alors

du
V1= (1 —22)sin?(u)

Quand z €]0,1[, 1 — 2% > 0 et est égal au carré de sa racine carrée et ainsi

Vo €]0,1[, I(1,2) = K(v/1—2?)

26. (a) On a

w/2 w/2
Wy —Whi = / sin?"(t)(1 — sin®(t)) dt = / cos(t) sin®"(t) cos(t) dt
0 0

u'(t) = cos(t)sin®*(t) se primitive en u(t) = 2n1+1 sin?"*1(t) et v(t) = cos(t) se dérive en
v'(t) = —sin(t). u,v € C1([0,7/2]) et on peut intégrer par parties pour obtenir

m/2 1
/2
Wo= W = [0 = [ u0'() dt = 5 Wi

On conclut que

2n+1
2n + 2

Vn € N, Wn+1 =

(b) On prouve le résultat par récurrence.
- Initialisation : Wy = § et le résultat est vrai au rang 0.

- Hérédité : on suppose le résultat vrai au rang n. Avec la question précédente, et en

écrivant 325 = (27;?(273(5{;;1),
2 1 2n)! 2 2)!
SR N ) BN c T B
m + 2 22n+1(n!)2 22n+3((n + 1)!)2
(2n)!




1
V1-t

27. Le cours nous dit que g : t — est DSE de rayon 1. Son développement est alors donné

par Taylor :
> 4(n)
N 9"(0)
vt el —1,1], g(t) = Eo !

On montre par récurrence que

n—1
2k+1 _ 2n+1 (Qn)' _ o2n+1
() ($) = _ — _
g =] H5—-7"" = -0
k=0
_ N @),
vt G] 17 1[> g(t) — nzz;] 22n(n|)2t

28. I nous suffit alors d’appliquer I'égalité en (xsin(t))? (qui est dans | — 1,1]) :

1 = (2n)!
Vr el —-1,1[, Vt € R, = 2P gin® (¢t
] [ 1 — 22sin?(t) r; 221 (n!)? ©)

29. A ce niveau, on a

w/2 o0 2n)!
Ve €] —1,1], K(x) = /0 Z 22(71(7:3")23:2” sin?(t) dt
n=0 )

On veut intervertir les symboles. On va utiliser le théoreme de convergence dominée pour les
séries de fonctions. Ici, x €] — 1, 1] est fixé.

- fan  t— (2n)!

W:UQ" sin?"(t) est le terme général d'une série de fonctions continues qui
converge simplement sur [0, 7/2] vers t —

1

elle méme continue.
1—22sin?(¢)

- Comme les fonctions sont positives,

n

> flt)

k=0

1

1 — 22sin?(t)

vt € [0,7/2], Vk € N,

<D hlt) =
k=0

Le majorant est continu sur le segment [0, 7/2] et donc intégrable sur ce segment.

Le théoreme s’applique et donne

- (2n)! 2 /7T/2 . 2 - (2n)! 2
K(x) = — " sin“"(t) dt = —— "W,
D= Ly O 2

Il reste a utiliser I’expression de W,, pour conclure que

T = ((2n)!)?
Yo <11 K@) =5 3 e
n=0 :

30. On a
M(3,5) = M(5,3) = 5M(1,3) = 5;1(113/5) N 527rff<i/5>

On déduit M (3,5) de K(4/5) dont on a une expression sous forme de somme de série numérique.



