CONCOURS MINES PONTS 2016 - FILIERE MP

Théoreme taubérien de Hardy-Littlewood-Karamata

A - Une intégrale a parametre

1. Montrer que la fonction 1 est intégrable sur [
e—u
La fonction ¢ : u — —
¥ T
— Comme hI—P ue™* = 0 alors ¥(u) = 0400(u??). La fonction u — u3/? est intégrable sur
U—r1+00
[1, 4+o00[ (intégrale de Riemann) donc ¢ est intégrable sur [1, +o0o[ par comparaison de fonctions

positives.

est continue et positive sur |0, +-00].

1
— La fonction @ est équivalente en 0 & u +—> T qui est intégrable sur |0, 1] (intégrale de Riemann).
u

Par comparaison de fonctions positives, ¢ est intégrable sur |0, 1].
De ce fait,

la fonction 1 est intégrable sur I =]0, 4o00| ‘

2. Déterminer les valeurs de z pour lesquelles F(z) est définie.

e—u

(u+z)Vu

— Siz <0, la fonction f, n’est pas continue par morceaux sur |0, +o00[ donc F'(z) n’est pas définie.

On pose fp :u+—>

- —+00 C
On peut préciser que de plus f(u)du et/ f(u)du ne sont pas définies car f(u) ~
0 _z u——x U + T
1 1
— Siz =0, la fonction f, n’est pas intégrable sur |0, 1] car fy(u) ~ —= et u+— —= n’est pas
u—0 u3/2 u3/2

intégrable (intégrale de Riemann).
1
— Siz > 0, la fonction f, est positive et pour tout u € I, f,(u) < —t(u). Comme 9 est intégrable
x

sur I (question 1.), f, est intégrable sur I.

On en déduit que lla fonction F' est définie sur I =]0, +o0 ‘

3. Montrer que F est de classe ¢! sur I et exprimer F’(z) sous forme intégrable.

e*'lll
(u+z)yu
— Pour tout x € I, f, : u+— f(x,u) est continue (par morceaux) et intégrable sur I d’apres 2.
— Pour tout u € I, x — f(z,u) est de classe €’ par rapport & z et

Notons f : (z,u) € I?

af L e ¥
7" = Tt orva

. 0 .

— Pour tout x € I, la fonction u — —f(x, u) est continue (par morceaux) sur I.
x

— Hypothése de domination locale : Pour tout a > 0,

—u

Va € [a, oo, Vu € I, ‘gi(x,u) < £

_a2\/ﬂ:

)

1
ot u — —1(u) est intégrable sur I.
a

Ainsi, par le théoreme de dérivation des intégrales a parametre, F' est ’de classe €1 sur I|et

+o0 e~ U
v I,F =— —d
sel Pl == [ o

4. En déduire que pour tout = € I,...



Soit x € I. Calculons F'(x) par intégration par parties.

—y ] +oo +o0 —u +oo —u
2\/ue ] N / 2/ ue du+ / 2\/ue du
0 0

F(x)_[x—i-u r+u (x4 u)?

0

Toutes les intégrales sont bien définies car F'(z) est défini et que le < crochet > vaut 0 d’apres les
limites usuelles.

On a

+o0 ue Y +o00 ue Y
F = 2 ————=du +2 ———=d
() /0 (x4 u)yu v /0 (x+u)?/u "
+oo e U +o00o e U 400 e U 400 e
= 2 —du — 2 ——=d —————=du—2 ————=d
A e A e B e v M e v
en écrivant v = (u + x) — x dans les deux termes
= 2K —2xF(z) + F(z) — 22F'(z)

—Uu

Finalement on obtient bien |2F'(z) — (z — 1) F(z) = K

+oo ,—t
5. Montrer qu’il existe une constante C telle que G(z) = C — K/ ert.
0

La fonction G : z — /xe *F(z) est dérivable sur I et pour tout = € I,

G'(x) = 2\1/§€_I - \/Ee_r> F(x) + Vre *F' ()

- % xF’(x)(x;)F(x)>

_ g

NG

De ce fait, comme G’ est continue et que I est un intervalle, en intégrant,

d’apres 4.

x ,—t
il existe une constante C' telle que Vx € I,G(x) = C — K/ ert.
0

6. Déterminer les limites de G en 0 et +c0 et en déduire la valeur de K.

— Calculons la limite de G en +oco. La fonction F' est positive (par positivité de l'intégrale) et
décroissante (car la dérivée est négative) donc elle tend vers une limite finie ¢ en 400. De ce
fait, lim G(z) =0car lim /ze ™ =0.

T—r+00 T—r+00

D’autre part, en utilisant la formule trouvée en 5. on obtient que G(z) — C — K2. On en

T—>+00
déduit que .

— Calculons maintenant la limite de G en 0. Comme e” —5 1 on peut se contenter de calculer la
Tr—r

limite de \/zF (z). On effectue le changement de variable affine v = zt; du = zdt.

\/EF(:C) - +oo xﬁe—mtdt - +oo e—xtdt
0 Vat(xt + x) 0 V(1 —I—t).

On peut alors faire tendre = vers 0. On applique pour ce faire la version continue du théoreme de
—xt

convergence dominée. En effet pour tout ¢ € I, la fonction z — ———  tend vers

1
V(1 +t) V(1 + 1)

—at
est continue (par morceau)

V(1 +t)

quand z tend vers 0. Pour tout x € R, la fonction ¢t —
sur I et pour tout x € R et tout t € I,

\ﬁ??i t>’ = \/i(11+t)




1
ou t — ———— est intégrable sur I. On en déduit que

V(1 + 1)

. : oo dt
MO =IO = iy

1
Maintenant, cette derniere intégrale se calcule en posant v = v/t; dv = Tﬁdt (la fonction

t €]0, +00[— v/t est de classe €, strictement monotone et induit une bijection de ]0, +oo[ sur
lui méme). On obtient,

+o0 dt /+°° 2dv
- — __ — 2arctan(v)]T® = 7.
0o Vit(l+1) o (1+0?) [ (@)lo

D’autre par en reprenant la formule trouvée en 5. on obtient que G(z) — C.
Tr—r

En conclusion K2 = C' = 7 et donc | K = /7 |.

B - Etude de deux séries de fonctions
7. Montrer que f et g sont définies et continues sur /.

— Soit x € I, la série (D e ™) converge car e~ = (e *)" et que |e”*| < 1 (série géométrique).
—nx

NZD

) converge aussi. La fonction f est définie sur I.

De plus, pour tout entier n > 1, < e ™ donc par comparaison de séries a termes positifs,

e—’l’b$

NG

. . . €
Maintenant pour tout entier n, la fonction x

n

la série (

—nx

est continue. De plus, pour tout a € I, la

—nx

. e
fonction x —

NG

est bornée sur [a, +00[ et

—nx

vn

e—TLCL

00,[a,+o00[ a \/ﬁ

X —

—na
) la série de fonction définissant n converge normalement donc uni-
n

Comme la série (D ¢

formément sur tout segment de I d’ou f est continue.

— Soit & € I, & partir d’un certain rang, v/ne " < e "%/2 car \/ne "/? = 0 et est donc
n—-+0oo

inférieur & 1 & partir d’un certain rang. De ce fait, en procédant comme ci-dessus, on montre
que g est aussi définie et continue sur I.
8. Montrer que .... En déduire un équivalent de f(x) lorsque = tend vers 0.

e—u:c

Vu

valeurs dans Ry et que u — —= aussi. On peut donc utiliser la méthode de comparaison série-intégrale.
U

U

Soit x € I, on étudie 0 : u — . Elle est décroissante car u +— e~"* est une fonction décroissante a

Précisément, pour tout entier IV,

—n

N-1 N o—nz N
/1 9(u)du§7§:1 N S/o 0(u)du.

En faisant tendre IV vers 400 on obtient,

+009 p <+Ooefnx_ - +o<>9 p
/1 <u>u_n§ﬁ—f<x>_/0 (u)du.

Notons que les intégrales convergent d’apres la question 1.




On pose v = ux ; dv = xdu dans les deux intégrales et on obtient que

1 —+00 e~ v 1 “+oo e~V “+o0o e~V “+oo e

EL W AEvsIes Vo -l

+oo ,—v
e
Par encadrement, on en déduit que \/xf(x) — / dv = /7 d’apres la question 6.
0

x—0 \/17
. [T
En conclusion | f(x) ~o\ o
T—> T

noo1
9. Montrer que la suite (Z — — 2\/ﬁ> converge.
n>1

—v

=1 Vk

On pose pour k > 1, v, = — —

(\f_ ﬁ) On a donc, par téléscopage,

pour tout entier n > 1,

Or la fonction t +— est définie et continue sur I et décroissante. De ce fait, pour tout k > 2,

7
1
< —

1 </k L
vk—-1" k—1\/f k

Cela implique que (pour k > 2)

1 1

E—1 Vk

La série () v) est donc une série a termes positifs dont les sommes partielles sont majorées car

0< v <

Vn € N* ka<v1+z\/7 f§1+v1

n

1
On en déduit que la série () vy) converge et donc |la suite (Z T 2\/ﬁ> converge.
k=1 >1

n
10. Démontrer que la série ) (Z ) e~ "™ converge et exprimer sa somme h(z) en fonction

n>1 \k=1
de f(x).
Soit « € I. Pour tout N >1

1 1 (e*’“‘” _ 67(N+1):v)

P k1l—e®
N N
_ 1 L —kx _ _—(N+1)z i
SRl PO oo

La premiere partie est une série convergente qui tend vers

e f(x). La deuxiéme partie tend vers
—e

n
0, en effet, d’apres la question précédente, les sommes partielles >

1
N =1 Vk
2 —(N+1)z 0.
\/ﬁe Njoo

sont équivalentes & 2y/n et



En conclusion |la série converge et sa somme h(x) vaut h(z) =

On pouvait aussi utiliser un produit de Cauchy.
N3
wﬁOQm&Q.

11. En déduire un équivalent de h(z) pour = — 0. Montrer que g(x)

En utilisant les résultats des questions 8 et 10, on obtient que |h(x) ~ —/— =

n

=1 2¢/n.

Maintenant, on pose () la suite définie a la question 9. par a,, =

On a donc pour x € I,

“+00

= 1 —nx
h(z) = Z(;\/Ee )

+oo

= 2(2\/77 + ap)e ™

n=1

+oo
= 2¢(x)+ E ape” " car les deux séries convergent
n=1

Maintenant, on a vu a la question 9. que (ay,) était une suite positive, croissante et convergente. Si on
note A sa limite, on a pour tout z € I,

+o0
§ :ane—nx
n=1

A A

<A

= ~ .
l—e7a=0x

+00
> =
n=0

On en déduit que
<X 1 1
—nr __ —) = )
Yo = 0, (1) = (3m)

. 1 VT
Finalement, g(z) ~ §h(x) 250 22312

C - Séries de fonctions associées a des ensembles d’entiers
12. Quel est 14 quand A est fini?

Si A est fini alors la suite (ay,) est presque nulle. De ce fait, pour tout z dans Ry, la série (Y ane™"%)

n>0
converge. On a alors |4 = R, |

On suppose que A est infini. On veut construire une extractrice, ¢ strictement croissante de N dans N
telle que pour tout entier n, b, = a,(,) = 1. Pour cela on pose ¢(0) = min A et pour tout entier n > 0,
o(n + 1) = min(AN]p(n), +oo[). La définition & bien un sens, car pour tout entier n, ANjy(n), 00|
est une partie non vide (car A est infini) de N qui admet donc un plus petit élément. Par construction,
on a bien que ¢(n + 1) > ¢(n) donc ¢ est strictement croissante et a,(,) = 1 car ¢(n) € A.

Dans le cas ou A est infini, si z = 0 la série ( ) a,) diverge car sinon les sommes partielles seraient
>0

majorées ce qui impliquerait que A serait ﬁr?i.i Maintenant pour x > 0, on a pour tout entier N,

Zﬁ;o ape” ™ < ZnNzo e "M <L o= La série est donc une série a termes positifs dont les sommes

partielles sont majorées. Elle converge. ’ Onadonc Iy =R} =1|

13. Vérifier que la série >  Card(A(n))e "™ converge et que ...
n>0



Soit x € S. Pour tout entier n, on a par définition de A(n), Card(A(n)) = > ag. On en déduit que

pour tout entier N =
N N N
Z Card(A(n))e ™ = Z (Z ake_m>
n=0 n=0 \k=0
n N
— ag PRt
k=0 n=k
1 al kx Y (N+1)
= {"o=¢ Zake - (Z ay)
k=0 k=0

Maintenant, quand N — 400, le premier terme tend vers T —f A(x) et le deuxieme terme tend

vers 0 car il est majoré par (N + 1)6_(N 1% qui tend vers 0 quand N. En conclusion, la série converge
_ 1
et > Card(A(n))e ™ = i falx).

14. Cas ou A = A; ’ensemble des carrées des entiers naturels non nuls.
Soit > 0. Soit n > 0, A;(n) = {1,4,9,---,p?} ou p?> < n et (p+ 1)2 > n. Clest-a-dire que
p < +y/n <p+ 1. On en déduit que Card(A;1(n)) =p = [/n].

Des lors, en utilisant 13. on obtient que

fA1(x) ZCard Al e~ Zl_f —nx.

Maintenant, par définition de la partie entiere, pour tout entier n,

[Vn] <vn < [Vn]+1

d’o,

+oo +oo +oo
I S| e <3 vie ™ = g(e) < (1) + e = S
n=0 n=0 n=0

1—e* 1—e*

En conclusion,

fa,(z) 1
0<g(z)— 1_1(33 ST

On utilise alors ’équivalent trouvé a la question 11. On a que

3/2f () 3/2
x4 fa, (x x
O < 3/2 _ 1 <
s @ g(@) l—e?® ~1—e?
. . , . N 3/2 ﬁ
Comme le terme de droite tend vers 0 car il est équivalent en 0 & /x et que z°/“g(x) —, g onen
d

3/2
déduit (par encadrement) que v (@) — VT et finalement | fa,(x) ~ ﬁ

l—e® z—0 2 x

On en déduit que xf4,(x) — 0 et donc que Ay € S et ®(A;) = 0.
T—

15. Cas ou A = A, I’ensemble des entiers qui sont la somme des carrées de deux entiers
naturels non nuls.



Pour tout entier n, on pose v(n) le nombre de couples d’entiers (p, q) pour lesquels, p? + ¢ = n. Si on
pose (a,) la suite définie par

1 sin est un carré parfait
ap = .
" 0 sinon.

n
on a que pour tout entier n, v(n) = > aga,—_k. En effet on parcourt tous les couples (k,n — k) et on
k=0
teste si k et n — k sont des carrées parfaits.

Maintenant pour tout = > 0, la série (3, <o ane” est une série positive convergente (et donc

absolument convergente). D’apres la formule du produit de Cauchy, la série >  w(n) converge aussi
n>0

TLZL‘)

ol pour tout entier n,

n
= Zake_kx.an_ke n—k)z (Z Ay k) T =wu(n)e .
k=0

De plus la somme est donnée par

—+00

2
> v(me (Zan ) = (fa,@)*.

n=0

Maintenant, si on consideére (by,) la suite définie par I’ensemble Ay, on a donc pour tout entier n,
by, <wv(n). Car deés que by, vaut 1 alors v(n) vaut au moins 1. On en déduit directement que pour tout
x>0,

fa, (2 Zb e < Z e = (fa, (2))*.

Par suite, zf4,(z) < 2(fa, (z))?. En réutilisant 'équivalent, fa, (z ) trouvé a la question 15,

f
—0 2/

™
on obtient que hH(l) o(fa,(2))? = 1 En admettant que Az € S et en passant a la limite, on obtient
T—

que | ®(Ag) < %

D - Un théoréme taubérien

16. Montrer que L est bien définie et linéaire de E dans F. Vérifier que ¢; < 12 implique
L(¢1) < L(¢a).

Soit 1 € E. C’est une fonction continue par morceaux sur [0, 1]. Elle est en particulier bornée. De

ce fait, pour tout > 0, la fonction L(v)) est définie en x, en effet la série Y ane ™™ P(e™™") est
n>0
absolument convergente donc convergente car pour tout entier n,

|ane™ 4 (e™" )] <[] cocne™™

et la série (> ane ™) est convergente par hypothese.

n>0
Par contre, la fonction L() n’est pas définie en 0. Il semble qu’il y a un probléme dans la définition
de l’espace vectoriel F

L’application L est linéaire d’apres la linéarité de la somme des séries.

De plus si ¥ < 1p9 alors pour tout = > 0 et pour tout entier n,

car ape” ™ > 0. En passant a la somme L(v1)(z) < L(12)(z).

17. Vérifier que F; est un sous-espace vectoriel de F et A est une forme linéaire continue sur

(B ]-foo)-



La fonction nulle 0 appartient & E; car L(0) est la fonction nulle. De plus, si ¢ et 1)y appartiennent
a Fj et si \, u sont deux scalaires, on pose ¥’ = A1 + p)s. On a alors pour tout z > 0,

2(L(Y")(x) = Az(L(¥1))(2) + pa(L(¥2))(x)
Quand x — 0, les deux termes ont une limite finie par définition (& savoir AA(¢1) et pA(1)2)). Donc
z(L(¢'))(x) a une limite finie et de ce fait, ¢’ € Fj.
On a bien montré que E7 était un sous-espace vectoriel de E.

De plus, on vient de voir qu’avec les notations précédentes, A(Ap1 + uve) = AA(¢1) + pA(he) ce qui
signifie que A est une forme linéaire.

Il reste & montrer que A est continue sur (E1, ||.||oo)-

Soit ¢ € En, d’apres les calculs de la question 16, pour tout x > 0,

|[2(L(¢)(2)] = =

—+00 “+o00
3" e ()| <23 e[|
n=0 n=0

En faisant tendre z vers 0, on obtient alors que

[A()] = | lim 2(L())(2)| < [d]]oo-

Cela implique bien que ’la fonction A est une forme linéaire continue sur (E1,||.||co)- ‘

18. Montrer que ¢, appartient a E;. Calculer A(ey,). En déduire que Ey C E; et calculer A(%))

pour ¢ € Ey.
On pose e, : t — tP pour p € N.
+oo
— Pour p =0, on a pour tout x > 0, (L(eg))(x) = > anre ™. De ce fait, ey € E; et
n=0

+oo
Aleg) = gljli%l‘ Z ape " =14
n=0

par hypothese.
— Pour p > 0, on a pour tout z > 0,

+o0 oo
(L(ep)(@) =Y ane ™ (™) =3 ane ™) = (L(eo))((p + 1)a).
n=0

n=0

On en déduit que

1 l
z(L(ep))(z) = m-(p + D)x(L(eo))((p + 1)z) s il
. 14
Finalement, | pour tout p € N, e, € E; et A(ep) = g
p

On en déduit par linéarité que pour toute fonction polynomiale P sur [0,1], P € Ej et A(P) =
1 1
€/ P(t)dt car pour tout entier p € N, A(e,) = 6/ ep(t)dt.
0 0
Maintenant, si ¢ est une fonction continue sur [0, 1], d’apres le théoréme de Weierstrass, il existe une

suite (Py) de fonctions polynomiales sur [0, 1] qui converge uniformément vers .

Posons, pour tout entier k, Fj : x — x(L(Py))(z) et F : x — x(L(¢))(x). En reprenant les calculs
précédent, on obtient que pour tout x > 0,

“+oo
|Fi(2) = F(2)] < ) wane™™ [Py — ¥lloc = || P = ¢lloot(L(en)) ().

n=0



Maintenant, pour tout a > 0, la série de fonctions ) | a,e™ ™ converge normalement sur [a, 1] donc la
fonction x — L(ep)(x) est continue sur |0, 1[. Il en est de méme pour = — x(L(ep))(z). Cette derniere
se prolonge par continuité en 0 (car elle tend vers ¢ en 0). En particulier, elle est alors continue sur
[0, 1] et donc bornée. Cela permet de déduire que (F}) converge uniformément sur |0, 1] vers F'. Comme
de plus, par hypothese, pour tout k& > 0, alslg%) Fy(z) = A(Py). D’apres le théoréeme de la double limite,

la suite (A(Py)) converge (on le savait déja) et

lim F(z) = lim A(P).

z—0 k—+o0

Cela signifie que 9 appartient a E7 et que

1 1
A@W) = lim A(P) = lim ¢ [ Pu(t)dt = ¢ / w(b)dt.
0

k—4o00 k—o0 0

La derniére égalité découle du fait que (Py) converge uniformément vers .

19. Vérifier que g, et g_ appartiennent a Ey, calculer A(g_) et A(g;). Montrer que 1y, € E;
et calculer A(1lj,)). En déduire F; = E et calculer A(v).

Les fonctions g4 et g_ sont affines par morceaux, de plus,

lim gf(x):wzl; lim g,(x): a—a

z—(ae)t € z—a~ €

=0.

On en déduit que g_ est continue sur [0, 1]. De méme pour g..

On a donc

A(g_)zf/olg_(t)dtzf</Oa_€1dt+/aa€a;tdt+/:0dt> :z[(a—ewg} :z(a—g).

Un calcul similaire, donne A(gy) = £ (a+ 5).

On remarque alors que pour tout € > 0, g— < 1jg 4 < g+. De ce fait, en utilisant 16. on obtient que
pour tout x > 0,

z(L(g-))(x) < 2(L(1jp,q)))(x) < z(L(g+)(x))-

Maintenant,

z—0

lim z(L(g_))(z) = ¢ (a - f)
)

alors il existe 7_ tel que z < n_ implique z(L(g-))(z) > ¢ (a —
méme on obtient ;4 tel que z < 74 implique z(L(g4))(z) < ¢ (a +
n = min (n_,n4+) on obtient que pour z < 7,

t(a—¢) <a(L(g-))(x) < x(L(1jpq))(x) < z(Llg)(2) < L(ate).

Ceci étant vrai pour tout €, z(L(1jo4)))(z) — al donc 1y 4 € E et
r—r

1
A(l[(),a]) =al = f/o Lo, (t)dt.

Soit a € [0, 1], en procédant comme ci-dessus, avec h_ la fonction nulle et A la fonction définie par

0 size[0,a—¢]
—a+e+x .
————— siz €la—¢,d
he(@) =9 a+eun
_— si x €la,a + €]
5
0 six €la+e,1]



1 iz = . .
on montrer que 0, : T — 0 Z;naé)n “ est aussi dans Ej et telle que A(d,) = 0. De ce fait en

modifiant une fonction ¢) d’un nombre fini de valeurs, on ne modifie pas ’appartenance (ou la non
appartenance) a E; pas plus que la valeur de A(v))

Maintenant, pour (a,b) € [0, 1]?, on remarque Lap = Lo, = Ljo,a- De ce fait, par linéarité, les fonctions
en escalier appartiennent a Fj.

Finalement, pour toute fonction ¥ continue par morceaux et tout € > 0, on sait qu’il existe ¥_ et 4
des fonctions en escaliers telles que ¥ < ¥ < ¥4 et ¥ — - < e. On peut alors procéder comme
1

ci-dessus pour montrer que ¢ € E; et que A(y) = 6/ Y(t)dt
20. Calculer (L(¢)))(3-) pour tout entier N >0 et .

Soit N > 0, (L(¥))(%) = Jrzojoane_”/Nd}(e_"/N). Or on a
n=0

n
N > el — Sl e n<N

De ce fait,

1 N oy 1 N
(L) =3 ane ™Y e = D

On vient de voir (question 19.) que la fonction 1 qui est continue par morceaux appartient a Fp et

qaue 1 1
1
Aw)ze/o zp(t)dtzé/i dr=t.

1
Comme A(y) = lim —(L(¥))(%), on obtient finalement que
iy Z o=

1 1
21. Si A € S que vaut lim —Card(A(n)) ? Déterminer alors lim — - Z v(k).
n n n o

Soit A € S. On considére la suite (ay) définie au début de la partle C. On a alors pour tout entier
n
n, Card(A(n)) = > ax. Comme A € S, on a vu que pour tout z > 0, la série (Y a,e™"") converge
k=0 n>0
(vers fa(x)) et on suppose que xf4(x) — ®(A). On peut donc appliquer les résultats de la partie D
Tr—r

avec { = ®(A) et on obtient donc que

lim 1Card(A( = lim Z ar = Phi(A

n—4+oo N n—+oo N

En appliquant les résultats précédent a la suite (v(n)), on a vu que pour tout z > 0,

(n)e " (fa( ))2 v 2
:cngovne = z(fa,(2))” ~ . 2i) ot
On en déduit que

1 T
li k)= —.

k=1

Corrigé par Denis Petrequin : denis.petrequin@ac-rennes.fr
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