
CONCOURS MINES PONTS 2016 - FILIERE MP

Théorème taubérien de Hardy-Littlewood-Karamata

A - Une intégrale à paramètre

1. Montrer que la fonction ψ est intégrable sur I

La fonction ψ : u 7→ e−u√
u

est continue et positive sur ]0,+∞[.

— Comme lim
u→+∞

ue−u = 0 alors ψ(u) = o+∞(u3/2). La fonction u 7→ u3/2 est intégrable sur

[1,+∞[ (intégrale de Riemann) donc ψ est intégrable sur [1,+∞[ par comparaison de fonctions
positives.

— La fonction ψ est équivalente en 0 à u 7→ 1√
u

qui est intégrable sur ]0, 1] (intégrale de Riemann).

Par comparaison de fonctions positives, ψ est intégrable sur ]0, 1].

De ce fait, la fonction ψ est intégrable sur I =]0,+∞[ .

2. Déterminer les valeurs de x pour lesquelles F (x) est définie.

On pose fx : u 7→ e−u

(u+ x)
√
u

— Si x < 0, la fonction fx n’est pas continue par morceaux sur ]0,+∞[ donc F (x) n’est pas définie.

On peut préciser que de plus

∫ −x
0

f(u)du et

∫ +∞

−x
f(u)du ne sont pas définies car f(u) ∼

u→−x

C

u+ x

— Si x = 0, la fonction fx n’est pas intégrable sur ]0, 1] car fx(u) ∼
u→0

1

u3/2
et u 7→ 1

u3/2
n’est pas

intégrable (intégrale de Riemann).

— Si x > 0, la fonction fx est positive et pour tout u ∈ I, fx(u) ≤ 1

x
ψ(u). Comme ψ est intégrable

sur I (question 1.), fx est intégrable sur I.

On en déduit que la fonction F est définie sur I =]0,+∞[ .

3. Montrer que F est de classe C 1 sur I et exprimer F ′(x) sous forme intégrable.

Notons f : (x, u) ∈ I2 7→ e−u

(u+ x)
√
u

.

— Pour tout x ∈ I, fx : u 7→ f(x, u) est continue (par morceaux) et intégrable sur I d’après 2.
— Pour tout u ∈ I, x 7→ f(x, u) est de classe C 1 par rapport à x et

∂f

∂x
(x, u) = − e−u

(u+ x)2
√
u

— Pour tout x ∈ I, la fonction u 7→ ∂f

∂x
(x, u) est continue (par morceaux) sur I.

— Hypothèse de domination locale : Pour tout a > 0,

∀x ∈ [a,+∞[, ∀u ∈ I,
∣∣∣∣∂f∂x (x, u)

∣∣∣∣ ≤ e−u

a2
√
u

=
1

a2
ψ(u)

où u 7→ 1

a2
ψ(u) est intégrable sur I.

Ainsi, par le théorème de dérivation des intégrales à paramètre, F est de classe C 1 sur I et

∀x ∈ I, F ′(x) = −
∫ +∞

0

e−u

(u+ x)2
√
u
du

4. En déduire que pour tout x ∈ I,...
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Soit x ∈ I. Calculons F (x) par intégration par parties.

F (x) =

[
2
√
ue−u

x+ u

]+∞
0

+

∫ +∞

0

2
√
ue−u

x+ u
du+

∫ +∞

0

2
√
ue−u

(x+ u)2
du

Toutes les intégrales sont bien définies car F (x) est défini et que le � crochet � vaut 0 d’après les
limites usuelles.

On a

F (x) = 2

∫ +∞

0

ue−u

(x+ u)
√
u
du+ 2

∫ +∞

0

ue−u

(x+ u)2
√
u
du

= 2

∫ +∞

0

e−u√
u
du− 2x

∫ +∞

0

e−u

(x+ u)
√
u
du+

∫ +∞

0

e−u

(x+ u)
√
u
du− 2x

∫ +∞

0

e−u

(x+ u)2
√
u
du

en écrivant u = (u+ x)− x dans les deux termes

= 2K − 2xF (x) + F (x)− 2xF ′(x)

Finalement on obtient bien xF ′(x)− (x− 1
2)F (x) = K .

5. Montrer qu’il existe une constante C telle que G(x) = C −K
∫ +∞

0

e−t

t
dt.

La fonction G : x 7→
√
xe−xF (x) est dérivable sur I et pour tout x ∈ I,

G′(x) =

(
1

2
√
x
e−x −

√
xe−x

)
F (x) +

√
xe−xF ′(x)

=
e−x√
x

(
xF ′(x)− (x− 1

2
)F (x)

)
= −Ke−x√

x
d’après 4.

De ce fait, comme G′ est continue et que I est un intervalle, en intégrant,

il existe une constante C telle que ∀x ∈ I,G(x) = C −K
∫ x

0

e−t

t
dt.

6. Déterminer les limites de G en 0 et +∞ et en déduire la valeur de K.

— Calculons la limite de G en +∞. La fonction F est positive (par positivité de l’intégrale) et
décroissante (car la dérivée est négative) donc elle tend vers une limite finie ` en +∞. De ce
fait, lim

x→+∞
G(x) = 0 car lim

x→+∞

√
xe−x = 0.

D’autre part, en utilisant la formule trouvée en 5. on obtient que G(x) −→
x→+∞

C −K2. On en

déduit que C = K2 .
— Calculons maintenant la limite de G en 0. Comme ex −→

x→0
1 on peut se contenter de calculer la

limite de
√
xF (x). On effectue le changement de variable affine u = xt ; du = xdt.

√
xF (x) =

∫ +∞

0

x
√
xe−xtdt√

xt(xt+ x)
=

∫ +∞

0

e−xtdt√
t(1 + t)

.

On peut alors faire tendre x vers 0. On applique pour ce faire la version continue du théorème de

convergence dominée. En effet pour tout t ∈ I, la fonction x 7→ e−xt√
t(1 + t)

tend vers
1√

t(1 + t)

quand x tend vers 0. Pour tout x ∈ R+, la fonction t 7→ e−xt√
t(1 + t)

est continue (par morceau)

sur I et pour tout x ∈ R et tout t ∈ I,∣∣∣∣ e−xt√
t(1 + t)

∣∣∣∣ ≤ 1√
t(1 + t)
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où t 7→ 1√
t(1 + t)

est intégrable sur I. On en déduit que

lim
x→0

G(x) = lim
x→0

√
xF (x) =

∫ +∞

0

dt√
t(1 + t)

.

Maintenant, cette dernière intégrale se calcule en posant v =
√
t ; dv =

1

2
√
t
dt (la fonction

t ∈]0,+∞[7→
√
t est de classe C 1, strictement monotone et induit une bijection de ]0,+∞[ sur

lui même). On obtient,∫ +∞

0

dt√
t(1 + t)

=

∫ +∞

0

2dv

(1 + v2)
= 2 [arctan(v)]+∞0 = π.

D’autre par en reprenant la formule trouvée en 5. on obtient que G(x) −→
x→0

C.

En conclusion K2 = C = π et donc K =
√
π .

B - Étude de deux séries de fonctions

7. Montrer que f et g sont définies et continues sur I.

— Soit x ∈ I, la série (
∑
e−nx) converge car e−nx = (e−x)n et que |e−x| < 1 (série géométrique).

De plus, pour tout entier n ≥ 1,
e−nx√
n
≤ e−nx donc par comparaison de séries à termes positifs,

la série (
∑ e−nx√

n
) converge aussi. La fonction f est définie sur I.

Maintenant pour tout entier n, la fonction x 7→ e−nx√
n

est continue. De plus, pour tout a ∈ I, la

fonction x 7→ e−nx√
n

est bornée sur [a,+∞[ et

∣∣∣∣∣∣∣∣x 7→ e−nx√
n

∣∣∣∣∣∣∣∣
∞,[a,+∞[

=
e−na√
n

Comme la série (
∑ e−na√

n
) la série de fonction définissant n converge normalement donc uni-

formément sur tout segment de I d’où f est continue.
— Soit x ∈ I, à partir d’un certain rang,

√
ne−nx ≤ e−nx/2 car

√
ne−nx/2 −→

n→+∞
0 et est donc

inférieur à 1 à partir d’un certain rang. De ce fait, en procédant comme ci-dessus, on montre
que g est aussi définie et continue sur I.

8. Montrer que .... En déduire un équivalent de f(x) lorsque x tend vers 0.

Soit x ∈ I, on étudie θ : u 7→ e−ux√
u

. Elle est décroissante car u 7→ e−ux est une fonction décroissante à

valeurs dans R+ et que u 7→ 1√
u

aussi. On peut donc utiliser la méthode de comparaison série-intégrale.

Précisément, pour tout entier N ,∫ N−1

1
θ(u)du ≤

N∑
n=1

e−nx√
n
≤
∫ N

0
θ(u)du.

En faisant tendre N vers +∞ on obtient,∫ +∞

1
θ(u)du ≤

+∞∑
n=1

e−nx√
n

= f(x) ≤
∫ +∞

0
θ(u)du.

Notons que les intégrales convergent d’après la question 1.
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On pose v = ux ; dv = xdu dans les deux intégrales et on obtient que

1√
x

∫ +∞

x

e−v√
v
dv =

1

x

∫ +∞

x

e−v√
v/x

dv ≤ f(x) ≤ 1

x

∫ +∞

0

e−v√
v/x

dv =
1√
x

∫ +∞

0

e−v√
v
dv.

Par encadrement, on en déduit que
√
xf(x) −→

x→0

∫ +∞

0

e−v√
v
dv =

√
π d’après la question 6.

En conclusion f(x) ∼
x→0

√
π

x
.

9. Montrer que la suite

(
n∑

k=1

1√
k
− 2
√
n

)
n≥1

converge.

On pose pour k ≥ 1, vk =
1√
k
−
∫ k

k−1

1√
t
dt =

1√
k
− 2(
√
k −
√
k − 1). On a donc, par téléscopage,

pour tout entier n ≥ 1,
n∑

k=1

vk =
n∑

k=1

1√
k
− 2
√
n

Or la fonction t 7→ 1√
t

est définie et continue sur I et décroissante. De ce fait, pour tout k ≥ 2,

1√
k − 1

≤
∫ k

k−1

1√
t
dt ≤ 1√

k
. Cela implique que (pour k ≥ 2)

0 ≤ vk ≤
1√
k − 1

− 1√
k

La série (
∑
vk) est donc une série à termes positifs dont les sommes partielles sont majorées car

∀n ∈ N∗,
n∑

k=1

vk ≤ v1 +
n∑

k=2

1√
k − 1

− 1√
k
≤ 1 + v1.

On en déduit que la série (
∑
vk) converge et donc la suite

(
n∑

k=1

1√
k
− 2
√
n

)
n≥1

converge.

10. Démontrer que la série
∑
n≥1

(
n∑

k=1

1√
k

)
e−nx converge et exprimer sa somme h(x) en fonction

de f(x).

Soit x ∈ I. Pour tout N ≥ 1

N∑
n=1

(
n∑

k=1

1√
k

)
e−nx =

N∑
k=1

1√
k

N∑
n=k

e−nx

=

N∑
k=1

1√
k
.

1

1− e−x
(
e−kx − e−(N+1)x

)
=

1

1− e−x

(
N∑
k=1

1√
k
e−kx − e−(N+1)x

N∑
k=1

1√
k

)

La première partie est une série convergente qui tend vers
1

1− e−x
f(x). La deuxième partie tend vers

0, en effet, d’après la question précédente, les sommes partielles
n∑

k=1

1√
k

sont équivalentes à 2
√
n et

2
√
ne−(N+1)x −→

N→+∞
0.
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En conclusion la série converge et sa somme h(x) vaut h(x) =
1

1− e−x
f(x).

On pouvait aussi utiliser un produit de Cauchy.

11. En déduire un équivalent de h(x) pour x→ 0. Montrer que g(x) ∼
x→0

√
π

2x3/2
.

En utilisant les résultats des questions 8 et 10, on obtient que h(x) ∼
x→0

1

x

√
π

x
=

√
π

x3/2
.

Maintenant, on pose (αn) la suite définie à la question 9. par αn =
∑n

k=1

1√
k
− 2
√
n.

On a donc pour x ∈ I,

h(x) =
+∞∑
n=1

(
n∑

k=1

1√
k
e−nx

)

=

+∞∑
n=1

(2
√
n+ αn)e−nx

= 2g(x) +
+∞∑
n=1

αne
−nx car les deux séries convergent

Maintenant, on a vu à la question 9. que (αn) était une suite positive, croissante et convergente. Si on
note A sa limite, on a pour tout x ∈ I,∣∣∣∣∣

+∞∑
n=1

αne
−nx

∣∣∣∣∣ ≤ A
∣∣∣∣∣
+∞∑
n=0

e−nx

∣∣∣∣∣ =
A

1− e−x
∼

x→0

A

x
.

On en déduit que
+∞∑
n=1

αne
−nx = O

x→0

(
1

x

)
= o

x→0

(
1

x3/2

)
.

Finalement, g(x) ∼
x→0

1

2
h(x) ∼

x→0

√
π

2x3/2
.

C - Séries de fonctions associées à des ensembles d’entiers

12. Quel est IA quand A est fini ?

Si A est fini alors la suite (an) est presque nulle. De ce fait, pour tout x dans R+, la série (
∑
n≥0

ane
−nx)

converge. On a alors IA = R+ .

On suppose que A est infini. On veut construire une extractrice, ϕ strictement croissante de N dans N
telle que pour tout entier n, bn = aϕ(n) = 1. Pour cela on pose ϕ(0) = minA et pour tout entier n ≥ 0,
ϕ(n + 1) = min(A∩]ϕ(n),+∞[). La définition à bien un sens, car pour tout entier n, A∩]ϕ(n),+∞[
est une partie non vide (car A est infini) de N qui admet donc un plus petit élément. Par construction,
on a bien que ϕ(n+ 1) > ϕ(n) donc ϕ est strictement croissante et aϕ(n) = 1 car ϕ(n) ∈ A.

Dans le cas où A est infini, si x = 0 la série (
∑
n≥0

an) diverge car sinon les sommes partielles seraient

majorées ce qui impliquerait que A serait fini. Maintenant pour x > 0, on a pour tout entier N ,∑N
n=0 ane

−nx ≤
∑N

n=0 e
−nx ≤ 1

1− e−x
. La série est donc une série à termes positifs dont les sommes

partielles sont majorées. Elle converge. On a donc IA = R∗+ = I .

13. Vérifier que la série
∑
n≥0

Card(A(n))e−nx converge et que ...
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Soit x ∈ S. Pour tout entier n, on a par définition de A(n), Card(A(n)) =
n∑

k=0

ak. On en déduit que

pour tout entier N

N∑
n=0

Card(A(n))e−nx =

N∑
n=0

(
N∑
k=0

ake
−nx

)

=
n∑

k=0

ak

N∑
n=k

e−nx

=
1

1− e−x

(
N∑
k=0

ake
−kx − (

N∑
k=0

ak)e−(N+1)x

)

Maintenant, quand N → +∞, le premier terme tend vers
1

1− e−x
fA(x) et le deuxième terme tend

vers 0 car il est majoré par (N + 1)e−(N+1)x qui tend vers 0 quand N . En conclusion, la série converge

et
+∞∑
n=0

Card(A(n))e−nx =
1

1− e−x
fA(x).

14. Cas où A = A1 l’ensemble des carrées des entiers naturels non nuls.

Soit x > 0. Soit n ≥ 0, A1(n) = {1, 4, 9, · · · , p2} où p2 ≤ n et (p + 1)2 > n. C’est-à-dire que
p ≤
√
n < p+ 1. On en déduit que Card(A1(n)) = p = b

√
nc.

Dès lors, en utilisant 13. on obtient que

fA1(x)

1− e−x
=

+∞∑
n=0

Card(A1(n))e−nx =

+∞∑
n=0

b
√
nce−nx.

Maintenant, par définition de la partie entière, pour tout entier n,

b
√
nc ≤

√
n ≤ b

√
nc+ 1

d’où,

fA1(x)

1− e−x
=

+∞∑
n=0

b
√
nce−nx ≤

+∞∑
n=0

√
ne−nx = g(x) ≤

+∞∑
n=0

(b
√
nc+ 1)e−nx =

fA1(x)

1− e−x
+

1

1− e−x

En conclusion,

0 ≤ g(x)− fA1(x)

1− e−x
≤ 1

1− e−x
.

On utilise alors l’équivalent trouvé à la question 11. On a que

0 ≤ x3/2g(x)− x3/2fA1(x)

1− e−x
≤ x3/2

1− e−x
.

Comme le terme de droite tend vers 0 car il est équivalent en 0 à
√
x et que x3/2g(x) −→

x→0

√
π

2
on en

déduit (par encadrement) que
x3/2fA1(x)

1− e−x
−→
x→0

√
π

2
et finalement fA1(x) ∼

x→0

√
π

2
√
x
.

On en déduit que xfA1(x) −→
x→0

0 et donc que A1 ∈ S et Φ(A1) = 0.

15. Cas où A = A2 l’ensemble des entiers qui sont la somme des carrées de deux entiers
naturels non nuls.
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Pour tout entier n, on pose v(n) le nombre de couples d’entiers (p, q) pour lesquels, p2 + q2 = n. Si on
pose (an) la suite définie par

an =

{
1 si n est un carré parfait
0 sinon.

on a que pour tout entier n, v(n) =
n∑

k=0

akan−k. En effet on parcourt tous les couples (k, n− k) et on

teste si k et n− k sont des carrées parfaits.

Maintenant pour tout x > 0, la série (
∑

n≥0 ane
−nx) est une série positive convergente (et donc

absolument convergente). D’après la formule du produit de Cauchy, la série
∑
n≥0

w(n) converge aussi

où pour tout entier n,

w(n) =
n∑

k=0

ake
−kx.an−ke

−(n−k)x =

(
n∑

k=0

akan−k

)
e−nx = v(n)e−nx.

De plus la somme est donnée par

+∞∑
n=0

v(n)e−nx =

(
+∞∑
n=0

ane
−nx

)2

= (fA1(x))2.

Maintenant, si on considère (bn) la suite définie par l’ensemble A2, on a donc pour tout entier n,
bn ≤ v(n). Car dès que bn vaut 1 alors v(n) vaut au moins 1. On en déduit directement que pour tout
x > 0,

fA2(x) =
+∞∑
n=0

bne
−nx ≤

+∞∑
n=0

v(n)e−nx = (fA1(x))2.

Par suite, xfA2(x) ≤ x(fA1(x))2. En réutilisant l’équivalent, fA1(x) ∼
x→0

√
π

2
√
x

trouvé à la question 15,

on obtient que lim
x→0

x(fA1(x))2 =
π

4
. En admettant que A2 ∈ S et en passant à la limite, on obtient

que Φ(A2) ≤
π

4
.

D - Un théorème taubérien

16. Montrer que L est bien définie et linéaire de E dans F . Vérifier que ψ1 ≤ ψ2 implique
L(ψ1) ≤ L(ψ2).

Soit ψ ∈ E. C’est une fonction continue par morceaux sur [0, 1]. Elle est en particulier bornée. De
ce fait, pour tout x > 0, la fonction L(ψ) est définie en x, en effet la série

∑
n≥0

αne
−nxψ(e−nx) est

absolument convergente donc convergente car pour tout entier n,

|αne
−nxψ(e−nx)| ≤ ||ψ||∞αne

−nx

et la série (
∑
n≥0

αne
−nx) est convergente par hypothèse.

Par contre, la fonction L(ψ) n’est pas définie en 0. Il semble qu’il y a un problème dans la définition
de l’espace vectoriel F

L’application L est linéaire d’après la linéarité de la somme des séries.

De plus si ψ1 ≤ ψ2 alors pour tout x > 0 et pour tout entier n,

αne
−nxψ1(e

−nx) ≤ αne
−nxψ2(e

−nx)

car αne
−nx ≥ 0. En passant à la somme L(ψ1)(x) ≤ L(ψ2)(x).

17. Vérifier que E1 est un sous-espace vectoriel de E et ∆ est une forme linéaire continue sur
(E1, ||.||∞).
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La fonction nulle 0 appartient à E1 car L(0) est la fonction nulle. De plus, si ψ1 et ψ2 appartiennent
à E1 et si λ, µ sont deux scalaires, on pose ψ′ = λψ1 + µψ2. On a alors pour tout x > 0,

x(L(ψ′))(x) = λx(L(ψ1))(x) + µx(L(ψ2))(x)

Quand x → 0, les deux termes ont une limite finie par définition (à savoir λ∆(ψ1) et µ∆(ψ2)). Donc
x(L(ψ′))(x) a une limite finie et de ce fait, ψ′ ∈ E1.

On a bien montré que E1 était un sous-espace vectoriel de E.

De plus, on vient de voir qu’avec les notations précédentes, ∆(λψ1 + µψ2) = λ∆(ψ1) + µ∆(ψ2) ce qui
signifie que ∆ est une forme linéaire.

Il reste à montrer que ∆ est continue sur (E1, ||.||∞).

Soit ψ ∈ E1, d’après les calculs de la question 16, pour tout x > 0,

|x(L(ψ))(x)| = x

∣∣∣∣∣
+∞∑
n=0

αne
−nxψ(e−nx)

∣∣∣∣∣ ≤ x
+∞∑
n=0

αne
−nx||ψ||∞

En faisant tendre x vers 0, on obtient alors que

|∆(ψ)| = | lim
x→0

x(L(ψ))(x)| ≤ `||ψ||∞.

Cela implique bien que la fonction ∆ est une forme linéaire continue sur (E1, ||.||∞).

18. Montrer que ep appartient à E1. Calculer ∆(ep). En déduire que E0 ⊂ E1 et calculer ∆(ψ)
pour ψ ∈ E0.

On pose ep : t 7→ tp pour p ∈ N.

— Pour p = 0, on a pour tout x > 0, (L(e0))(x) =
+∞∑
n=0

αne
−nx. De ce fait, e0 ∈ E1 et

∆(e0) = lim
x→0

x
+∞∑
n=0

αne
−nx = `

par hypothèse.
— Pour p > 0, on a pour tout x > 0,

(L(ep))(x) =

+∞∑
n=0

αne
−nx(e−nx)p =

+∞∑
n=0

αne
−nx(1+p) = (L(e0))((p+ 1)x).

On en déduit que

x(L(ep))(x) =
1

p+ 1
.(p+ 1)x(L(e0))((p+ 1)x) −→

x→0

`

p+ 1

Finalement, pour tout p ∈ N, ep ∈ E1 et ∆(ep) =
`

p+ 1
.

On en déduit par linéarité que pour toute fonction polynomiale P sur [0, 1], P ∈ E1 et ∆(P ) =

`

∫ 1

0
P (t)dt car pour tout entier p ∈ N, ∆(ep) = `

∫ 1

0
ep(t)dt.

Maintenant, si ψ est une fonction continue sur [0, 1], d’après le théorème de Weierstrass, il existe une
suite (Pk) de fonctions polynomiales sur [0, 1] qui converge uniformément vers ψ.

Posons, pour tout entier k, Fk : x 7→ x(L(Pk))(x) et F : x 7→ x(L(ψ))(x). En reprenant les calculs
précédent, on obtient que pour tout x > 0,

|Fk(x)− F (x)| ≤
+∞∑
n=0

xαne
−nx||Pk − ψ||∞ = ||Pk − ψ||∞x(L(e0))(x).
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Maintenant, pour tout a > 0, la série de fonctions
∑
αne

−nx converge normalement sur [a, 1] donc la
fonction x 7→ L(e0)(x) est continue sur ]0, 1[. Il en est de même pour x 7→ x(L(e0))(x). Cette dernière
se prolonge par continuité en 0 (car elle tend vers ` en 0). En particulier, elle est alors continue sur
[0, 1] et donc bornée. Cela permet de déduire que (Fk) converge uniformément sur ]0, 1] vers F . Comme
de plus, par hypothèse, pour tout k ≥ 0, lim

x→0
Fk(x) = ∆(Pk). D’après le théorème de la double limite,

la suite (∆(Pk)) converge (on le savait déjà) et

lim
x→0

F (x) = lim
k→+∞

∆(Pk).

Cela signifie que ψ appartient à E1 et que

∆(ψ) = lim
k→+∞

∆(Pk) = lim
k→∞

`

∫ 1

0
Pk(t)dt = `

∫ 1

0
ψ(t)dt.

La dernière égalité découle du fait que (Pk) converge uniformément vers ψ.

19. Vérifier que g+ et g− appartiennent à E0, calculer ∆(g−) et ∆(g+). Montrer que 1[0,a] ∈ E1

et calculer ∆(1[0,a]). En déduire E1 = E et calculer ∆(ψ).

Les fonctions g+ et g− sont affines par morceaux, de plus,

lim
x→(aε)+

g−(x) =
a− (a− ε)

ε
= 1; lim

x→a−
g−(x) =

a− a
ε

= 0.

On en déduit que g− est continue sur [0, 1]. De même pour g+.

On a donc

∆(g−) = `

∫ 1

0
g−(t)dt = `

(∫ a−ε

0
1dt+

∫ a

a−ε

a− t
ε

dt+

∫ 1

a
0dt

)
= `

[
(a− ε) +

ε

2

]
= `(a− ε

2
).

Un calcul similaire, donne ∆(g+) = `
(
a+ ε

2

)
.

On remarque alors que pour tout ε > 0, g− ≤ 1[0,a] ≤ g+. De ce fait, en utilisant 16. on obtient que
pour tout x > 0,

x(L(g−))(x) ≤ x(L(1[0,a]))(x) ≤ x(L(g+)(x)).

Maintenant,

lim
x→0

x(L(g−))(x) = `
(
a− ε

2

)
alors il existe η− tel que x ≤ η− implique x(L(g−))(x) ≥ `

(
a− ε

2

)
−`
(
ε
2

)
= ` (a− ε). On procédant de

même on obtient η+ tel que x < η+ implique x(L(g+))(x) ≤ `
(
a+ ε

2

)
+ `
(
ε
2

)
= ` (a+ ε). En prenant

η = min (η−, η+) on obtient que pour x < η,

` (a− ε) ≤ x(L(g−))(x) ≤ x(L(1[0,a]))(x) ≤ x(L(g+)(x)) ≤ ` (a+ ε) .

Ceci étant vrai pour tout ε, x(L(1[0,a]))(x) −→
x→0

a` donc 1[0,a] ∈ E1 et

∆(1[0,a]) = a` = `

∫ 1

0
1[0,a](t)dt.

Soit a ∈ [0, 1], en procédant comme ci-dessus, avec h− la fonction nulle et h+ la fonction définie par

h+(x) =


0 si x ∈ [0, a− ε]
−a+ ε+ x

ε
si x ∈]a− ε, a]

a+ ε− x
ε

si x ∈]a, a+ ε[

0 si x ∈]a+ ε, 1]
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on montrer que δa : x 7→
{

1 si x = a
0 sinon

est aussi dans E1 et telle que ∆(δa) = 0. De ce fait en

modifiant une fonction ψ d’un nombre fini de valeurs, on ne modifie pas l’appartenance (ou la non
appartenance) à E1 pas plus que la valeur de ∆(ψ)

Maintenant, pour (a, b) ∈ [0, 1]2, on remarque 1]a,b] = 1[0,b]−1[0,a]. De ce fait, par linéarité, les fonctions
en escalier appartiennent à E1.

Finalement, pour toute fonction ψ continue par morceaux et tout ε > 0, on sait qu’il existe ψ− et ψ+

des fonctions en escaliers telles que ψ− ≤ ψ ≤ ψ+ et ψ+ − ψ− ≤ ε. On peut alors procéder comme

ci-dessus pour montrer que ψ ∈ E1 et que ∆(ψ) = `

∫ 1

0
ψ(t)dt.

20. Calculer (L(ψ))( 1
N ) pour tout entier N > 0 et ...

Soit N > 0, (L(ψ))( 1
N ) =

+∞∑
n=0

αne
−n/Nψ(e−n/N ). Or on a

e−n/N ≥ e−1 ⇐⇒ n

N
≤ 1 ⇐⇒ n ≤ N

De ce fait,

(L(ψ))(
1

N
) =

N∑
n=0

αne
−n/N 1

e−n/N
=

N∑
n=0

αn.

On vient de voir (question 19.) que la fonction ψ qui est continue par morceaux appartient à E1 et
que

∆(ψ) = `

∫ 1

0
ψ(t)dt = `

∫ 1

1
e

1

t
dt = `.

Comme ∆(ψ) = lim
N→∞

1

N
(L(ψ))( 1

N ), on obtient finalement que

lim
n→∞

1

N

N∑
k=0

αk = `.

21. Si A ∈ S que vaut lim
n

1

n
Card(A(n)) ? Déterminer alors lim

n

1

n

n∑
k=1

v(k).

Soit A ∈ S. On considère la suite (an) définie au début de la partie C. On a alors pour tout entier

n, Card(A(n)) =
n∑

k=0

ak. Comme A ∈ S, on a vu que pour tout x > 0, la série (
∑
n≥0

ane
−nx) converge

(vers fA(x)) et on suppose que xfA(x) −→
x→0

Φ(A). On peut donc appliquer les résultats de la partie D

avec ` = Φ(A) et on obtient donc que

lim
n→+∞

1

n
Card(A(n)) = lim

n→+∞

1

n

n∑
k=0

ak = Phi(A).

En appliquant les résultats précédent à la suite (v(n)), on a vu que pour tout x > 0,

x

+∞∑
n=0

v(n)e−nx = x(fA1(x))2 ∼
x→0

x.

( √
π

2
√
x

)2

∼
x→0

π

4
.

On en déduit que

lim
n→+∞

1

n

n∑
k=1

v(k) =
π

4
.

Corrigé par Denis Petrequin : denis.petrequin@ac-rennes.fr
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