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Théorème taubérien de Hardy-Littlewood-Karamata

Dans tout le problème, I désigne l'intervalle ]0,+∞[.

A Une intégrale à paramètre

Pour tout x ∈ R on pose, sous réserve d'existence,

F(x) =

∫ +∞

0

e−u√
u(u+ x)

du et K =

∫ +∞

0

e−u√
u

du

1. Démontrer que ψ : u 7→ e−u√
u

est intégrale sur I.

2. Déterminer les valeurs de x pour lesquelles F(x) est dé�nie.

3. Montrer que la fonction F est de classe C1 sur I et exprimer F′(x) sous forme intégrale.

4. En déduire que pour tout x ∈ I, xF′(x)− (x− 1
2)F(x) = −K.

5. Pour tout x ∈ I, on pose G(x) =
√
xe−xF(x). Montrer qu'il existe une constante réelle C telle que pour tout

x ∈ I, G(x) = C−K ·
∫ x

0

e−t√
t

dt.

6. Déterminer les limites de G en 0 et +∞, et en déduire la valeur de K.

B Étude de deux séries de fonctions

Dans toute cette partie, on pose f(x) =
+∞∑
n=1

e−nx√
n

et g(x) =
+∞∑
n=0

√
ne−nx.

7. Montrer que f et g sont dé�nies et continues sur I.

8. Montrer que pour tout x ∈ I,
∫ +∞

1

e−ux√
u

du 6 f(x) 6
∫ +∞

0

e−ux√
u

du.

En déduire un équivalent de f(x) lorsque x→ 0.

9. Montrer que la suite

(
n∑

k=1

1√
k
− 2
√
n

)
n>1

converge.

10. Démontrer que pour tout x > 0, la série
∑
n>1

(
n∑

k=1

1√
k

)
e−nx converge et exprimer sa somme h(x) en fonction

de f(x) pour tout x ∈ I.

11. En déduire un équivalent de h(x) lorsque x→ 0. Montrer alors que g(x) est équivalent à

√
π

2x3/2
lorsque x→ 0.

C Séries de fonctions associées à des ensembles d'entiers

À tout ensemble A ⊆ N on associe la suite (an) dé�nie par

an =

{
1 si n ∈ A,
0 sinon.

1/3



Mines-Ponts MP Mathématiques 2 2016

Soit IA l'ensemble des réels x > 0 pour lesquels la série
∑
n>0

ane−nx converge. On pose fA(x) =

+∞∑
n=0

ane−nx pour tout

x ∈ IA. En�n, sous réserve d'existence, on pose Φ(A) = lim
x→0

xfA(x) et on note S l'ensemble des parties A ⊆ N pour

lesquelles Φ(A) existe.

12. Quel est l'ensemble Ia si A est �ni ? Si A est in�ni, montrer que l'on peut extraire une suite (bn) de la suite
(an) telle que pour tout n ∈ N, bn = 1. Déterminer IA dans ce cas.

13. Soit A ∈ S et (an) la suite associée. Pour tout entier naturel n, on note A(n) l'ensemble des éléments de A

qui sont 6 n. Véri�er que pour tout x > 0 la série
∑
n>0

Card(A(n))e−nx converge et que

+∞∑
n=0

Card(A(n))e−nx =
fA(x)

1− e−x

Dans la question suivante, A = A1 désigne l'ensemble des carrés d'entiers naturels non nuls.

14. Montrer que si x > 0,
fA1(x)

1− e−x
=

+∞∑
n=0

b
√
nce−nx où b·c désigne la partie entière.

En déduire un encadrement de
+∞∑
n=0

√
ne−nx − fA1(x)

1− e−x
, puis un équivalent de fA1 en 0. Prouver alors que

A1 ∈ S et donner Φ(A1).

Dans la question suivante, A = A2 désigne l'ensemble constitués des entiers qui sont la sommes des carrés de deux
entiers naturels non nuls. On admet que A2 appartient à S, et on désire majorer Φ(A2).

Soit v(n) le nombre de couple d'entiers naturels non nuls (p, q) pour lesquels n = p2 + q2.

15. Montrer que pour tout réel x > 0, la série
∑
n>0

v(n)e−nx converge et établir que

+∞∑
n=0

v(n)e−nx = (fA1(x))2.

Montrer alors que pour tout x > 0, fA2(x) 6 (fA1(x))2. En déduire un majorant de Φ(A2).

D Étude de deux séries de fonctions

Soit (αn)n>0 une suite de nombres réels positifs tels que pour tout réel x > 0, la série
∑
n>0

αne−nx converge. On

suppose que

lim
x→0

(
x

+∞∑
n=0

αne−nx

)
= ` ∈ [0,+∞[.

On note F l'espace vectoriel des fonctions de [0, 1] dans R, E le sous-espace de F des fonctions continues par morceaux
et E0 le sous-espace de E des fonctions continues sur [0, 1]. On munit E de la norme ‖ ‖∞ dé�nie par la formule
‖ψ‖∞ = sup

t∈[0,1]
|ψ(t)|.

Si ψ ∈ E, on note L(ψ) l'application qui à x > 0 associe

(L(ψ))(x) =
+∞∑
n=0

αne−nxψ(e−nx).
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16. Montrer que L(ψ) est bien dé�nie pour tout ψ ∈ E et que l'application L est une application linéaire de E
dans F. Véri�er que pour tous ψ1, ψ2 dans E1, ψ1 6 ψ2 entraîne L(ψ1) 6 L(ψ2).

On note E1 l'ensemble des ψ ∈ E pour lesquels lim
x→0

x(L(ψ))(x) existe et si ψ ∈ E1, on pose

∆(ψ) = lim
x→0

x(L(ψ))(x)

17. Véri�er que E1 est un sous espace vectoriel de E et que l'application ∆ est une forme linéaire continue de
(E1, ‖ ‖∞).

18. Montrer que pour tout p ∈ N, ep : t ∈ [0, 1] 7→ tp appartient à E1 et calculer ∆(ep). En déduire que E0 ⊆ E1

et calculer ∆(ψ) pour tout ψ ∈ E0.

Pour tous a, b ∈ [0, 1] tel que a < b, on note 1[a,b] : [0, 1]→ {0, 1} la fonction dé�nie par

1[a,b](x) =

{
1 si x ∈ [a, b]
0 sinon.

Soit a ∈]0, 1[ et ε ∈]0,min(a, 1− a)[. On note

g−(x) =


1 si x ∈ [0, a− ε]
a− x
ε

si x ∈]a− ε, a[

0 si x ∈ [a, 1]

et

g+(x) =


1 si x ∈ [0, a]
a+ ε− x

ε
si x ∈]a, a+ ε[

0 si x ∈ [a+ ε, 1].

19. Véri�er que g− et g+ appartiennent à E0 et calculer ∆(g−) et ∆(g+). Montrer alors que 1[0,a] ∈ E1 et calculer
∆(1[0,a]). En déduire que E1 = E et donner ∆(ψ) pour tout ψ ∈ E.

On considère maintenant la fonction ψ dé�nie sur [0, 1] par la formule :

ψ(x) =

{
0 si x ∈ [0, 1e [
1

x
si x ∈ [1e , 1].

20. Calculer (L(ψ))( 1
N) pour tout entier N > 0 et en déduire la limite

lim
N→+∞

1

N

N∑
k=0

αk

(théorème taubérien).

On rappelle que v(n) est le nombre de couples d'entiers naturels non nuls (p, q) tels que n = p2 + q2.

21. Si A ∈ S, que vaut lim
n→+∞

1

n
Card (A(n)) ? Déterminer alors lim

n→+∞

1

n

n∑
k=1

v(k).

Fin du problème
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