
Mpi Devoir surveillé 4 - sujet CCP - E3A

Le sujet comporte trois pages et deux problèmes indépendants inspirés par le sujet CCINP MP - 2013. Il est rappelé que
l'objectif n'est pas d'essayer de tout faire, mais plutôt de rédiger proprement une fraction raisonnable des réponses aux
questions.

Il est demandé d'écrire lisiblement et de former des lettres et symboles qui soient clairement distinguables les uns des
autres.

La rigueur des raisonnements ainsi que la lisibilité de la copie seront prises en compte dans l'appréciation.

tout passage sale ou écrit de manière illisible ne sera pas lu.

**********************

Problème 1 - Matrices toutes-puissantes

Dans ce problème, K désigne R ou C.

n désigne un entier naturel non nul, E un K-espace vectoriel de dimension n.

Un endomorphisme f de E est dit tout-puissant quand pour tout k ∈ N∗, il existe g ∈ L (E) tel que f = gk.

Une matrice A de Mn(K) est dite toute-puissante quand pour tout k ∈ N∗, il existe B ∈ Mn(K) tel que A = Bk.

Pour abréger la rédaction, on écrit � f est TP (K) � (resp. � A est TP (K) �) pour signi�er que f (resp. A) est toute-
puissante dans L (E) (resp. Mn(K)).

I. Généralités

Q 1. Montrer que si A est la matrice d'un endomorphisme f dans une certaine base de E, alors A est TP (K) si et
seulement si f est TP (K).

Q 2. Montrer que tout projecteur de E est TP (K).

Q 3. Montrer que si deux matrices sont semblables et si l'une est TP (K), alors l'autre l'est aussi.

Q 4. Montrer que toute matrice diagonale de Mn(C) est TP (C). En déduire que toute matrice diagonalisable dans
Mn(C) est TP (C).

Q 5. Montrer que si A ∈ Mn(R) et A est TP (R), alors detA ⩾ 0.

II. Des exemples et contre-exemples

II.A - K = R et dimension 2 Dans les trois questions suivantes, on suppose que n = 2.

Pour t ∈ R, on pose R(t) =

(
cos t − sin t
sin t cos t

)
.

Q 6.

a) Montrer que pour tout (t, u) ∈ R2, R(t)R(u) = R(t+ u).

b) Pour t ∈ R et k ∈ N, que vaut R(t)k ?

c) Montrer que pour tout t ∈ R, R(t) est TP (R).

Q 7. Soit a, b deux réels. On pose A =

(
a 0
0 b

)
.

Montrer que dans les cas suivants, A est TP (R) :
� a et b positifs ou nuls
� a = b = −1
� a = b et a strictement négatif

Q 8. Justi�er que la matrice A =

(
−1 0
0 1

)
n'est pas TP (R).

II.B - K = C et dimension 3

Q 9. Soit J =

0 1 0
0 0 1
1 0 0

. On rappelle que j désigne le complexe e2iπ/3.
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a) Calculer J3 et montrer que J est TP (C).
b) Sans calculer le polynôme caractéristique, donner les valeurs propres de J . Diagonaliser J .

c) Donner une matrice M telle que M2 = J .

III. Matrices ou endomorphismes diagonalisables et TP (R)
Dans les questions Q 10 à Q 13, on suppose K = R et on cherche une condition nécessaire et su�sante pour qu'un
endomorphisme diagonalisable d'un R-espace vectoriel soit TP (R).
Q 10. Soit λ ∈ R. Montrer que si λ ⩾ 0, alors λ IdE est TP (R).

Montrer que si λ < 0, alors λ IdE est TP (R) si et seulement si n est pair. On pourra utiliser le résultat de la question

Q 7 et travailler par blocs.

Soit donc f un endomorphisme diagonalisable de E.

Q 11. On suppose qu'il existe k ∈ N∗ et g ∈ L (E) tel que f = gk.

Montrer que les sous-espaces propres de f sont stables par g.

Q 12. Montrer que si f est TP (R), alors les endomorphismes induits par f dans chacun de ses sous-espace propres sont
TP (R).

Q 13. Montrer l'équivalence :

f est TP (R) si et seulement si pour tout λ ∈ Sp(f) ∩ R∗
−, dim sep(f, λ) est paire.

Q 14. Soit A =

 0 −3 −3
−4 −1 3
4 −3 −7

.

a) Montrer que A est diagonalisable et donner une matrice P ∈ GL3(R) et D diagonale telles que A = PDP−1.

b) Montrer que A est TP (R).
c) Donner deux exemples de matrices B telles que A = B2 et A = B3 : il su�ra de donner B sous forme de produit

de 3 matrices dont seule celle du milieu est explicitée.

IV. Matrices nilpotentes

Dans cette partie, N est une matrice nilpotente de Mn(K).

Q 15.

a) Soit R ∈ K[X] tel que degR < n et R ̸= 0. Montrer que lim
x→0

∣∣∣∣R(x)

xn

∣∣∣∣ = +∞.

b) Soit V ∈ K[X] tel que V (x) =
x→0

o(xn). Montrer que Xn divise V .

Q 16. Soit k ∈ N∗. Montrer qu'il existe un polynôme U ∈ R[X] tel que 1 + x =
x→0

U(x)k + o(xn). On pourra utiliser un

dév. limité de (1 + x)α en 0.

En déduire l'existence d'un polynôme Q ∈ R[X] tel que 1 +X = Uk +XnQ.

Q 17.

a) Montrer que In +N est TP (C).
b) Montrer que pour tout λ ∈ C∗, λIn +N est TP (C).

Q 18. Montrer que si N ̸= 0, alors N n'est pas TP (C).

V. Les automorphismes sont TP (C)
Dans cette partie, K = C et f désigne un automorphisme de E, i.e. un élément de GL(E).

Son polynôme caractéristique s'écrit

r∏
i=1

(X − λi)
αi , où λ1, . . . , λr sont les r valeurs propres distinctes de f et α1, . . . , αr

sont leurs ordres de multiplicité.

Pour tout i ∈ [[1, r]], on pose Ei = Ker(f − λi)
αi .

Q 19. Montrer que E =

r⊕
i=1

Ei.

Q 20. Montrer que pour tout i ∈ [[1, r]], Ei est un sous-espace vectoriel stable par f . On note fi l'endomorphisme de Ei

induit par f .

Q 21. Justi�er que pour tout i ∈ [[1, r]], fi est de la forme λi IdEi + ui où ui est un endomorphisme nilpotent de Ei.

Q 22. Conclure : montrer que tout automorphisme de E est TP (C).
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Devoir surveillé 4 - sujet CCP - E3A - Corrigé

Problème 1

I.

Q 1. Soit f ∈ L (E), A sa matrice dans une base B.

Si f est TP (K), alors pour tout k ∈ N∗, il existe g ∈ L (E) tel que f = gk. On pose alors B la matrice de g dans
cette base et on a A = Bk. donc A est TP (K)

Réciproquement, si A est TP (K), alors pour tout k ∈ N∗, il existe B ∈ Mn(K) tel que A = Bk. On pose alors
g ∈ L (E) tel que B soit sa matrice dans la base B et on a f = gk. Donc f est TP (K).

Q 2. Si p est un projecteur, alors p = p2 donc par récurrence immédiate, pour tout k ∈ N∗, p = pk. Donc p est TP (K).

Q 3. Soit A, B deux matrices semblables. Alors elles représentent le même endomorphisme f dans des bases di�érentes.
Donc d'après la question Q 1,

A est TP (K) ⇐⇒ f est TP (K) ⇐⇒ B est TP (K)

Q 4. Soit D une matrice diagonale de Mn(C), on note d1, . . . , dn ses coe�cients diagonaux et k ∈ N∗. Dans C, tout
complexe possède des racines k-èmes, donc on peut poser e1, . . . , en des racines k-èmes de d1, . . . , dn respectivement
et E la matrice diagonale dont les coe�cients diagonaux sont e2, . . . , en : elle véri�e alors D = Ek. Donc D est
TP (C).

Soit M ∈ Mn(C) une matrice diagonalisable : elle est semblable à une matrice diagonale, qui est TP (C) d'après ce
qui précède, donc d'après la question Q 3, M est aussi TP (C).

Q 5. Soit A ∈ Mn(R) une matrice TP (R), alors en particulier, il existe B ∈ Mn(R) telle que A = B2, donc detA =
det(B2) = (detB)2 ⩾ 0, car detB est un réel.

II.

II.A -

Q 6.

a) Simple calcul et utilisation des formules classiques de trigonométrie.

b) Par récurrence immédiate, pour t ∈ R et k ∈ N, R(t)k = R(kt).

c) Soit t ∈ R et k ∈ N∗. On pose u =
t

k
. Alors R(t) = R(ku) = R(u)k. Donc R(t) est TP (R).

Q 7.

� Si a et b positifs ou nuls et k ∈ N∗, alors on pose B =

(
k
√
a 0

0
k
√
b

)
et on a A = Bk, donc dans ce cas, A est TP (R).

� Si a = b = −1, alors A = R(π) donc d'après la question précédente, A est TP (R).
� Si a = b et a strictement négatif et k ∈ N∗, alors on pose c = |a| ⩾ 0, puis B = k

√
cR

(π
k

)
, de sorte que

Bk = cR(π) =

(
−c 0
0 −c

)
=

(
a 0
0 a

)
. Donc A est TP (R).

Q 8. Son déterminant est strictement négatif donc d'après la question Q 5, elle n'est pas TP (R).

II.B -

Q 9.

a) Après calculs très simples, J3 = I3 donc le polynôme X3 − 1 est annulateur de J . Or il est scindé à racines simples
dans C (ses racines sont 1, j, j2) donc J est diagonalisable. donc elle est TP (C) d'après Q 4.

b) J est diagonalisable donc la somme de ses valeurs propres est égale à 0, sa trace. Et on sait que les valeurs propres
de J sont parmi 1, j, j2, les racines du polynôme annulateur. Or la seule facon d'obtenir 0 en faisant la somme de
trois nombres pris parmi 1, j, j2 est de les prendre tous : 1 + j + j2 = 0, alors que 1 + 1 + j ̸= 0, 1 + j + j ̸= 0, etc.
Donc Sp(J) = {1, j, j2}.

Après calculs non détaillés, on constate que

1
1
1

 est vecteur propre pour la valeur propre 1,

 1
j
j2

 est vecteur

1



propre pour la valeur propre j et

 1
j2

j

 est vecteur propre pour la valeur propre j2.

Donc en notant P =

1 1 1
1 j j2

1 j2 j

 et D =

1 0 0
0 j 0
0 0 j2

, on a D = P−1AP .

c) J3 = I3 donc J4 = J donc J = (J2)2 : M = J2 =

0 0 1
1 0 0
0 1 0

 convient.

III.

Q 10. Si λ ⩾ 0 et k ∈ N∗, on pose µ =
k
√
λ et alors λ IdE = (µ IdE)

k. Donc λ IdE est TP (R).

Si λ < 0, alors
� si λ IdE est TP (R), alors d'après Q 5, det(λ IdE) = λn ⩾ 0. Or λ < 0, donc n est pair ;
� réciproquement, si n est pair, alors dans une base quelconque de E, la matrice de λ IdE est λIn, qu'on écrit diagonale

par blocs, où chaque bloc est une matrice A =

(
λ 0
0 λ

)
: λIn =


A 0 . . . 0

0 A 0
...

...
. . .

. . . 0
0 . . . 0 A

 ;

Soit k ∈ N∗ ; d'après Q 7, il existe B ∈ M2(R) telle que A = Bk, donc en posant M =


B 0 . . . 0

0 B 0
...

...
. . .

. . . 0
0 . . . 0 B

, on a

Mk = λIn ; donc λ IdE est TP (R).
Q 11. f et g commutent donc pour toute valeur propre λ de f , pour tout x ∈ sep(f, λ), f(x) = λx donc g(f(x)) =

f(g(x)) = λg(x) donc g(x) ∈ sep(f, λ).

Q 12. Si f est TP (R), alors pour tout k ∈ N∗, il existe g ∈ L (E) tel que f = gk. D'après la question précédente, les
sous-espaces propres de f sont stables par g (et par f aussi !), donc on peut dé�nir dans chaque sous-espace propre
de f les endomorphismes induits par g et par f , que je note ḡ et f̄ : comme f = gk, alors f̄ = (ḡ)k, donc f̄ est aussi
TP (R).

Q 13. Si f est TP (R), alors soit λ une valeur propre strictement négative de f : l'endomorphisme induit par f dans
F = sep(f, λ) est λ IdF , qui est TP (R) d'après la question Q 12, donc d'après la question Q 10, dimF est paire.

Réciproquement, si pour tout λ ∈ Sp(f) ∩ R∗
−, dim sep(f, λ) est paire, alors l'endomorphisme induit par f dans

sep(f, λ) est TP (R) d'après Q 10 et dans tout autre sous-espace propre associé à une valeur propre positive λ, il

l'est aussi en reprenant la même idée qu'en Q 7, puisque dans ce cas, λ IdF = (
k
√
λ IdF )

k.

Donc en travaillant par blocs, on constate que f est TP (R).

Q 14.

a) Après calculs non détaillés, χA = X(X+4)2 donc SpR(A) = {0,−4} ; dim sep(A,−4) = 3−rg(A+4I3) = 2 ; comme
0 est valeur propre simple, dim sep(A, 0) = 1, donc la somme des dimensions des sous-espaces propres est égale à
3, donc A est diagonalisable.

Si on pose P =

 1 3 0
−1 4 1
1 0 −1

 et D =

0 0 0
0 −4 0
0 0 −4

, on a A = PDP−1.

b) A est diagonalisable et la dimension du sous-espace propre associé à la valeur propre strictement négative −4 est
paire, donc d'après Q 13, A est TP (R).

c) Par exemple, avec B = P

0 0 0
0 0 −2
0 2 −0

P−1, on a A = B2. On reconnaît le bloc 2R(π/2).

Et avec B =
3
√
4P

0 0 0

0 1/2 −
√
3/2

0
√
3/2 1/2

P−1, on a A = B3. On reconnaît le bloc
3
√
4R(π/3).

IV.

Q 15.
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a) R s'écrit

n−1∑
i=0

aiX
i et R ̸= 0 : parmi les coe�cients non nuls de R, on considère celui de plus petit degré k (k ⩽ n−1).

Alors R(x) ∼
x→0

akx
k, donc

∣∣∣∣R(x)

xn

∣∣∣∣ ∼
x→0

|ak|
|xn−k|

−−−→
x→0

+∞ car n− k > 0.

b) Soit V ∈ K[X] tel que V (x) =
x→0

o(xn). On e�ectue la division euclidienne de V par Xn : V = XnQ+R où Q et R

sont deux polynômes et degR < degXn.

Alors
V (x)

xn
= Q(x) +

R(x)

xn
: Q est un polynôme donc lim

x→0
Q(x) = Q(0) est un réel et si R ̸= 0, alors d'après la

question précédente,
R(x)

xn
a une limite in�nie quand x tend vers 0, donc dans ce cas, la limite de

V (x)

xn
est in�nie,

ce qui contredit l'hypothèse. Donc R est nul et donc Xn divise V .

Q 16. On considère le dév. limité de (1 + x)1/k en 0 à l'ordre n : il s'écrit (1 + x)1/k = U(x) + xnε(x), où U est un
polynôme de degré ⩽ n et ε une fonction ayant pour limite 0 en 0.

Par le binôme de Newton, on a alors 1 + x = (U(x) + o(xn))k = U(x)k +

k−1∑
j=0

(
k

j

)
U(x)k−jxnjε(x)j = U(x)k +

xnε(x)φ(x) où φ(x) =

k−1∑
j=0

(
k

j

)
U(x)k−jxn(j−1)ε(x)j−1 a une limite �nie quand x tend vers 0.

Donc 1 + x = U(x)k + o(xn) quand x tend vers 0.

D'après la question Q 15, le polynôme 1 +X − U(X)k est divisible par Xn, d'où l'existence de Q ∈ R[X] tel que
1 +X = U(X)k +XnQ(X).

Q 17.

a) Soit k ∈ N∗. Comme N ∈ Mn(C) est nilpotente, alors Nn = 0 (c'est du cours).

Or d'après la question Q 16, il existe U,Q deux polynômes tels que 1 +X = Uk +XnQ, donc en évaluant en N ,
on a In +N = U(N)k +NnQ(N) = U(N)k.

Donc In +N est TP (C).
b) Soit λ ̸= 0. Alors M = λIn +N s'écrit λ(In +N ′) où N ′ est nilpotente.

Soit k ∈ N∗. On choisit µ une racine k-ème de λ et d'après Q 16, on peut trouver une matrice A ∈ Mn(C) telle
que Ak = In +N ′. Donc M = (µA)k.

Donc M est TP (C).
Q 18. Par contraposée, on suppose que N est nilpotente et N est TP (C).

Alors il existe A ∈ Mn(C) telle que N = An. Donc Nn = An2

= 0, donc A est elle-même nilpotente, donc An = 0,
donc N = 0.

V.

Q 19. f est un endomorphisme dont le polynôme caractéristique est scindé, donc on sait d'après le cours que E est la
somme directe des sous-espaces caractéristiques, qui sont justement les Ei.

Q 20. C'est du cours : on refait la preuve du cours ici, car c'est l'essence de la question. Voyez donc votre cours.

Q 21. Encore du cours : on sait que fi véri�e (fi − λi IdEi
)αi = 0, donc en posant ui = fi − λi IdEi

, on a ui nilpotent et
fj = λi IdEi

+ ui.

Q 22. Soit f un automorphisme de E. Dans une certaine base, sa matrice est diagonale par blocs de la forme

M =


λ1Iα1 + U1 0 . . . 0

0 λ2Iα2
+ U2 0

...
...

. . .
. . .

...
0 . . . 0 λrIαr

+ Ur


où U1, . . . , Ur sont des matrices nilpotentes et λ1, . . . , λr sont les valeurs propres non nulles de f .

D'après Q 17, pour tout k ∈ N∗, chaque bloc λjIαj + Uj peut s'écrire Ak
j , donc M est la puissance k-ème de la

matrice diagonale par blocs diag(A1, . . . , Ar).

Donc f est TP (C).
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