
Mpi Devoir surveillé 3 - sujet CCP - E3A

Le sujet comporte trois pages et deux problèmes indépendants inspirés par le sujet CCINP PSI - 2011. Il est rappelé que
l'objectif n'est pas d'essayer de tout faire, mais plutôt de rédiger proprement une fraction raisonnable des réponses aux
questions.

Il est demandé d'écrire lisiblement et de former des lettres et symboles qui soient clairement distinguables les uns des
autres.

La rigueur des raisonnements ainsi que la lisibilité de la copie seront prises en compte dans l'appréciation.

tout passage sale ou écrit de manière illisible ne sera pas lu.

**********************

Problème 1 - Des séries

I. La série harmonique alternée

Pour n ∈ N∗, on pose sn =

n∑
k=1

(−1)k−1

k
.

Q 1. Justi�er que la série
∑
n⩾1

(−1)n−1

n
converge.

Q 2. Montrer que pour tout n ∈ N∗, sn =

∫ 1

0

1− (−t)n

1 + t
dt.

Q 3. Montrer que lim
n→+∞

sn = ln 2.

Il y a plusieurs façons de faire : entre autres, en utilisant le théorème de convergence dominée ou alors par enca-

drement.

On a donc montré :
+∞∑
n=1

(−1)n−1

n
= ln 2

II. Deux séries

Dans cette partie, α désigne un réel appartenant à l'intervalle ]0, 2π[, φ est la fonction t 7→ 1

eit − 1
.

Pour t ∈ ]0, 2π[ et n ∈ N∗, on pose Sn(t) =

n∑
k=1

eikt.

Q 4. Montrer que Sn(t) = φ(t)(ei(n+1)t − eit).

Q 5. Exprimer φ(t) à l'aide de eit/2 et sin(t/2) et en déduire que
∫ α

π

φ(t)eit dt =
α− π

2
− i ln(sin(α/2)).

Q 6. Justi�er que φ est de classe C1 sur ]0, 2π[. Montrer que lim
n→+∞

∫ α

π

φ(t)ei(n+1)t dt = 0. On pourra utiliser une

intégration par parties.

Q 7. Expliciter
∫ α

π

Sn(t) dt à l'aide de sn et de
n∑

k=1

eikα

k
. En déduire la convergence de la série

∑
k⩾1

eikα

k
ainsi que la

valeur de sa somme.

Q 8. Justi�er la convergence des séries
∑
k⩾1

cos(kα)

k
et

∑
k⩾1

sin(kα)

k
et donner la valeur de leurs sommes.

*******

1



Problème 2 - Fonctions dé�nies par des intégrales

Dans ce problème, g désigne une fonction à valeurs dans C et continue. On note E le R-espace vectoriel des fonctions à
valeurs dans R, continues et intégrables sur [0,+∞[.

Pour tout f ∈ E et x ∈ [0,+∞[, on pose f̃(x) =

∫ +∞

0

f(t)g(xt) dt (sous réserve de dé�nition).

I. Quelques résultats généraux et un exemple
Q 1. Montrer que si g est bornée, alors pour tout f ∈ E, la fonction f̃ est bien dé�nie, bornée et continue sur [0,+∞[.

Q 2. Montrer que si g a pour limite ℓ ∈ C en +∞, alors pour tout f ∈ E, la fonction f̃ est bien dé�nie sur [0,+∞[ et a
une limite �nie en +∞ à préciser.

Q 3. Soit f un élément de E qui est de classe C1. Dans cette question, on suppose d'abord que g est la fonction t 7→ eit.

Soit ε > 0.

a) Montrer qu'il existe a > 0 tel que
∫ +∞

a

|f | ⩽ ε.

b) Montrer que lim
x→+∞

∫ a

0

f(t)eixt dt = 0. On pourra utiliser une intégration par parties.

c) Montrer que f̃ est bien dé�nie sur [0,+∞[ et déduire du a) que f̃ a pour limite 0 en +∞.

On pourra utiliser la dé�nition de limite avec ε et écrire f̃(x) =

∫ a

0

f(t)eixt dt+

∫ +∞

a

f(t)eixt dt.

d) Et maintenant, que peut-on dire dans les cas où g est la fonction t 7→ sin t ou t 7→ cos t ?

À partir de maintenant et jusqu'à la �n du problème, g est la fonction t 7→ | sin t|.

D'après la partie précédente, on peut toujours dé�nir f̃ pour tout f ∈ E, puisque g est bornée.

II. Étude d'un cas particulier
Dans cette partie, f est la fonction t 7→ e−t.

Q 4. Pour γ ∈ R, calculer l'intégrale θ(y) =

∫ π

0

eγt sin(t) dt.

Q 5. Montrer que pour tout x > 0, f̃(x) =
1

x

∫ +∞

0

e−
u
x | sinu| du.

Q 6. Exprimer pour k ∈ N et x > 0, l'intégrale
∫ (k+1)π

kπ

e−
u
x | sinu| du en fonction de e−

kπ
x et θ(γ) pour un certain γ à

préciser.

Q 7. Justi�er que pour x > 0, la série
∑
k⩾0

e−
kπ
x converge et donner la valeur de sa somme.

Q 8. Pour x > 0, calculer f̃(x) et déterminer lim
x→+∞

f̃(x).

Dans la suite du problème, on admet l'égalité suivante :

∀t ∈ R |sin t| = 2

π
+

4

π

+∞∑
k=1

1

1− 4k2
cos(2kt)

Celle-ci se démontre à l'aide de résultats issus de la théorie des séries de Fourier.
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III. Un cas un peu plus général
Dans cette partie, on suppose que f ∈ E est de classe C1 et f ′ est intégrable sur [0,+∞[.

Q 9. Justi�er la convergence de la série
∑
k⩾1

1

1− 4k2
cos(2kt) pour tout t ∈ R.

Q 10. Montrer que f est bornée sur [0,+∞[ et que f a une limite en +∞, qui est 0. On pourra considérer

∫ x

0

f ′.

Q 11. Montrer que pour tout k ⩾ 1 et x > 0,

∣∣∣∣∫ +∞

0

f(t) cos(2kxt) dt

∣∣∣∣ ⩽ 1

2kx

(∫ +∞

0

|f ′|
)
.

Q 12. On pose h : t 7→
+∞∑
k=1

1

1− 4k2
cos(2kt).

Montrer qu'il existe une constante M telle que pour tout x > 0,

∣∣∣∣∫ +∞

0

f(t)h(xt) dt

∣∣∣∣ ⩽ M

x
.

Q 13. Montrer que f̃(x) a une limite �nie en +∞ à préciser.

IV. Un cas encore plus général
Dans cette partie, on suppose seulement que f ∈ E est de classe C1.

Q 14. À l'aide de la question Q 3, montrer que pour tout N ∈ N∗, lim
x→+∞

N∑
k=1

∫ +∞

0

f(t) cos(2kxt) dt = 0.

Q 15.

a) Montrer qu'il existe une constante M telle que

pour tout N ∈ N∗,

∣∣∣∣∣
+∞∑

k=N+1

1

4k2 − 1

∫ +∞

0

f(t) cos(2kxt) dt

∣∣∣∣∣ ⩽ M

+∞∑
k=N+1

1

4k2 − 1
.

b) En déduire que lim
x→+∞

∫ +∞

0

f(t)h(xt) dt = 0.

Q 16. Montrer que f̃(x) a une limite �nie en +∞ à préciser.

*******
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Devoir surveillé 3 - sujet CCP - E3A - Corrigé

Problème 1

I.

Q 1. Critère spécial des séries alternées (CCSA) : la suite

(
1

n

)
est positive, décroissante et converge vers 0 donc la série

alternée
∑
n⩾1

(−1)n−1

n
converge.

Q 2.
∫ 1

0

1− (−t)n

1 + t
dt =

∫ 1

0

n−1∑
k=0

(−t)k dt =

n−1∑
k=0

∫ 1

0

(−t)k dt =

n−1∑
k=0

(−1)k
1

k + 1
=

n∑
k=1

(−1)k−1

k
= sn

Q 3. Le plus simple : sn =

∫ 1

0

1

1 + t
dt−

∫ 1

0

(−t)n

1 + t
dt = ln 2 + (−1)n+1

∫ 1

0

tn

1 + t
dt.

Or pour tout t ∈ [0, 1], 0 ⩽
tn

1 + t
⩽ tn donc 0 ⩽

∣∣∣∣(−1)n+1

∫ 1

0

tn

1 + t
dt

∣∣∣∣ = ∫ 1

0

tn

1 + t
dt ⩽

∫ 1

0

tn dt =
1

n+ 1
, donc

d'après le th. d'encadrement, lim
n→+∞

(−1)n+1

∫ 1

0

tn

1 + t
dt = 0, donc lim

n→+∞
sn = ln 2.

II.
Q 4. Sn(t) est la somme des premiers termes de la suite géométrique de terme général (eit)k, de raison eit ̸= 1, donc

Sn(t) = eit
1− (eit)n

1− eit
=

1

eit − 1
eit(eint − 1) = φ(t)(ei(n+1)t − eit).

Q 5. eit − 1 = ei
t
2

(
ei

t
2 − e−i

t
2

)
= ei

t
2 × 2i sin(t/2) donc φ(t) =

e−i
t
2

2i sin(t/2)
. Donc

∫ α

π

φ(t)eit dt =

∫ α

π

ei
t
2

2i sin(t/2)
dt =

∫ α

π

cos(t/2) + i sin(t/2)

2i sin(t/2)
dt

=
−i

2

∫ α

π

cos(t/2)

sin(t/2)
dt+

∫ α

π

1

2
dt

= −i
[
ln(sin(t/2))

]α
t=π

+
α− π

2

=
α− π

2
− i ln(sin(α/2))

Q 6. φ est un quotient de fonctions de classe C1 sur ]0, 2π[ donc elle est elle-même de classe C1 sur ]0, 2π[.

Par intégration par parties :∫ α

π

φ(t)ei(n+1)t dt =

[
φ(t)

ei(n+1)t

i(n+ 1)

]α
π

−
∫ α

π

φ′(t)
ei(n+1)t

i(n+ 1)
dt

=
1

n+ 1

(
φ(α)ei(n+1)α − φ(π)ei(n+1)π + i

∫ α

π

φ′(t)ei(n+1)t dt

)
donc par inégalités triangulaires∣∣∣∣∫ α

π

φ(t)ei(n+1)t dt

∣∣∣∣ ⩽ 1

n+ 1

(
|φ(α)|+ |φ(π)|+

∫ α

π

|φ′(t)| dt
)

donc d'après le th. d'encadrement, ∫ α

π

φ(t)ei(n+1)t dt −−−−−→
n→+∞

0

Q 7. ∫ α

π

Sn(t) dt =

n∑
k=1

∫ α

π

eikt dt =

n∑
k=1

[
eikt

ik

]α
π

=

n∑
k=1

(
eikα − eikπ

ik

)
=

n∑
k=1

(
eikα − (−1)k

ik

)

=
1

i

n∑
k=1

eikα

k
+

1

i

n∑
k=1

(−1)k−1

k
=

1

i

n∑
k=1

eikα

k
+

1

i
sn

1



Or on a aussi d'après Q 4 :
∫ α

π

Sn(t) dt =

∫ α

π

φ(t)ei(n+1)t dt−
∫ α

π

φ(t)eit dt

donc d'après Q 5 :
∫ α

π

Sn(t) dt =

∫ α

π

φ(t)ei(n+1)t dt− α− π

2
+ i ln(sin(α/2)).

Donc
n∑

k=1

eikα

k
= i

∫ α

π

φ(t)ei(n+1)t dt− i
α− π

2
− ln(sin(α/2))− sn −−−−−→

n→+∞
− ln 2− ln(sin(α/2)) + i

π − α

2
d'après Q 6.

La série
∑
k⩾1

eikα

k
converge donc et

+∞∑
k=1

eikα

k
= − ln 2− ln(sin(α/2)) + i

π − α

2
.

Q 8. Les séries
∑
k⩾1

cos(kα)

k
et

∑
k⩾1

sin(kα)

k
sont les parties réelle et imaginaire de la série précédente, donc elles convergent

toutes les deux et de plus

+∞∑
k=1

cos(kα)

k
= − ln 2− ln(sin(α/2)) et

+∞∑
k=1

sin(kα)

k
=

π − α

2

Problème 2

I.
Q 1. Si g est bornée, alors il existe M > 0 tel que pour tout t ∈ [0,+∞[, |g(t)| ⩽ M donc pour tout f ∈ E et tout

x, t ⩾ 0, |g(xt)f(t)| ⩽ M |f(t)|.

Or f est intégrable sur [0,+∞[, donc par th. de comparaison d'intégrales de fonctions à valeurs positives (TCIFP),

t 7→ f(t)g(xt) l'est aussi, ce qui justi�e la convergence de l'intégrale
∫ +∞

0

f(t)g(xt) dt.

De plus, pour tout x ⩾ 0, |f̃(x)| ⩽
∫ +∞

0

M |f(t)| dt = M

∫ +∞

0

|f |, donc f̃ est bornée.

En�n,
� pour tout t ⩾ 0, x 7→ g(xt)f(t) est continue sur [0,+∞[
� pour tout t ⩾ 0, pour tout x ⩾ 0, |g(xt)f(t)| ⩽ M |f(t)| et M |f | est une fonction intégrable sur [0,+∞[ (hypothèse

de domination)

donc d'après le th. de continuité sous le signe
∫
, f̃ est continue sur [0,+∞[.

Q 2. Si g a pour limite ℓ ∈ C en +∞, alors g est bornée au voisinage de +∞ : il existe A > 0 tel que g est bornée sur
[A,+∞[.

Sur le segment [0, A], g est continue donc y est bornée (th. des bornes atteintes), donc �nalement, g est bornée sur
[0,+∞[. D'après la question précédente, pour tout f ∈ E, f̃ est bien dé�nie.

De plus, avec les mêmes notations,
� pour tout t > 0, lim

x→+∞
g(xt)f(t) = ℓf(t)

� pour tout t ⩾ 0, pour tout x ⩾ 0, |g(xt)f(t)| ⩽ M |f(t)| et M |f | est une fonction intégrable sur [0,+∞[ (hypothèse
de domination)

donc d'après le th. de convergence dominée, lim
x→+∞

f̃(x) =

∫ +∞

0

ℓf(t) dt = ℓ

∫ +∞

0

f .

Q 3.

a) Comme f est intégrable sur [0,+∞[, l'intégrale
∫ +∞

0

|f | converge, donc lim
a→+∞

∫ +∞

a

|f | = 0 : il existe donc a > 0

tel que
∫ +∞

a

|f | ⩽ ε.

b) C'est la même idée que dans le problème 1 :

Par intégration par parties, pour x > 0,∫ a

0

f(t)eixt dt =

[
f(t)

eixt

ix

]a
0

−
∫ a

0

f ′(t)
eixt

ix
dt

=
1

x

(
f(a)ei(n+1)a − f(0) + i

∫ a

0

f ′(t)eixt dt

)
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donc par inégalités triangulaires∣∣∣∣∫ a

0

f(t)eixt dt

∣∣∣∣ ⩽ 1

x

(
|f(a)|+ |f(0)|+

∫ a

0

|f ′(t)| dt
)

donc d'après le th. d'encadrement, ∫ a

0

f(t)eixt dt −−−−−→
x→+∞

0

c) g est bornée, donc d'après la question Q 1, f̃ est bien dé�nie.

Soit ε > 0.

Pour tout x, t ⩾ 0, |f(t)eixt| = |f(t)| donc pour tout x ⩾ 0,
∫ +∞

a

|f(t)eixt| dt ⩽ ε, donc par inégalité triangulaire,∣∣∣∣∫ +∞

a

f(t)eixt dt

∣∣∣∣ ⩽ ε.

On a donc
∣∣∣f̃(x)∣∣∣ = ∣∣∣∣∫ a

0

f(t)eixt dt+

∫ +∞

a

f(t)eixt dt

∣∣∣∣ ⩽ ∣∣∣∣∫ a

0

f(t)eixt dt

∣∣∣∣+ ∣∣∣∣∫ +∞

a

f(t)eixt dt

∣∣∣∣ ⩽ ∣∣∣∣∫ a

0

f(t)eixt dt

∣∣∣∣+ ε

Puis on fait tendre x vers +∞ :

d'après la question précédente, il existe x0 > 0 tel que pour tout x ⩾ x0,

∣∣∣∣∫ a

0

f(t)eixt dt

∣∣∣∣ ⩽ ε.

Donc pour tout x ⩾ x0,
∣∣∣f̃(x)∣∣∣ ⩽ 2ε.

On a donc montré :
∀ε > 0 ∃x0 > 0 ∀x ⩾ x0

∣∣∣f̃(x)∣∣∣ ⩽ 2ε

ce qui signie que f̃ a pour limite 0 en +∞.

d) Dans la question Q 3 b, on a montré : lim
x→+∞

∫ +∞

0

f(t)eixt dt = 0.

Donc les parties réelle et imaginaire de cette intégrale tendent vers 0 quand x tend vers +∞, en particulier

lim
x→+∞

∫ +∞

0

f(t) cos(xt) dt = 0 et lim
x→+∞

∫ +∞

0

f(t) sin(xt) dt = 0

II.

Q 4. eγt sin(t) est la partie imaginaire de eγteit, donc on calcule d'abord
∫ π

0

eγteit dt et θ(y) en est la partie imaginaire.∫ π

0

eγteit dt =

∫ π

0

e(γ+i)t dt =

[
e(γ+i)t

γ + i

]π
0

=
e(γ+i)π − 1

γ + i
= −eγπ + 1

γ + i
= −(eγπ + 1)

γ − i

γ2 + 1

donc θ(y) =
eγπ + 1

γ2 + 1
.

Q 5. Changement de variable u = xt (qui est un changement de variable bijectif et C1) :

f̃(x) =

∫ +∞

0

e−t| sin(xt)| dt =
∫ +∞

0

e−
u
x | sinu| du

x
.

Q 6. Par changement de variable t = u− kπ :∫ (k+1)π

kπ

e−
u
x | sinu| du =

∫ π

0

e−
t+kπ
x | sin t| dt car sin(t+ kπ) = (−1)k sin t.

donc
∫ (k+1)π

kπ

e−
u
x | sinu| du =

∫ π

0

e−
t
x e−

kπ
x | sin t| dt = e−

kπ
x

∫ π

0

e−
t
x . sin t dt = e−

kπ
x θ

(
−1

x

)
Q 7. La série

∑
k⩾0

e−
kπ
x est une série géométrique de raison r = e−

π
x et |r| < 1 (car x > 0), donc la série est convergente.

De plus,
+∞∑
k=0

e−
kπ
x =

1

1− e−
π
x

.

Q 8. f̃(x) =
1

x

∫ +∞

0

e−
u
x | sinu| du =

1

x

+∞∑
k=0

∫ (k+1)π

kπ

e−
u
x | sinu| du (par relation de Chasles sur une intégrale conver-

gente),
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donc f̃(x) =
1

x

+∞∑
k=0

e−
kπ
x θ

(
−1

x

)
=

1

x
θ

(
−1

x

) +∞∑
k=0

e−
kπ
x d'après la question Q 6

donc f̃(x) =
1

x
θ

(
−1

x

)
1

1− e−
π
x

=
1 + e−

π
x

1− e−
π
x

× x

π2 + x2
d'après Q 4.

x

π2 + x2
∼

x→+∞

x

x2
=

1

x
donc f̃(x) ∼

x→+∞
(1 + e−

π
x )×

1
x

1− e−
π
x

∼
x→+∞

2
1
x

1− e−
π
x

.

Or et − 1 ∼
t→0

t donc 1− e−
π
x ∼

x→+∞

π

x
donc f̃(x) ∼

x→+∞

2

π
: lim
x→+∞

f̃(x) =
2

π
.

III.

Q 9. Pour tout k ⩾ 1,

∣∣∣∣ 1

1− 4k2
cos(2kt)

∣∣∣∣ ⩽
1

4k2 − 1
et

1

4k2 − 1
∼

k→+∞

1

4k2
, donc par th. de comparaison de séries à

termes positifs (TCSTP), la série
∑
k⩾1

1

1− 4k2
cos(2kt) est absolument convergente.

Q 10. Pour tout x ⩾ 0, |f(x)− f(0)| =
∣∣∣∣∫ x

0

f ′(t) dt

∣∣∣∣ ⩽ ∫ x

0

|f ′(t)| dt ⩽
∫ +∞

0

|f ′(t)| dt,

donc |f(x)| ⩽ |f(0)|+
∫ +∞

0

|f ′(t)| dt. Donc f est bornée sur [0,+∞[.

De plus, comme f ′ est intégrable, l'intégrale
∫ +∞

0

f ′(t) dt est absolument convergente, donc f(x) = f(0) +∫ x

0

f ′ −−−−−→
x→+∞

f(0) +

∫ +∞

0

f ′.

f a donc une limite en +∞, mais comme f est intégrable, cette limite est nécessairement 0, sinon f ne serait pas
intégrable sur [0,+∞[ (voir cours).

Q 11. L'intégrale
∫ +∞

0

f(t) cos(2kxt) dt converge, car f est supposée intégrable sur [0,+∞[ et pour tout t ⩾ 0,

|f(t) cos(2kxt)| ⩽ |f(t)|, donc par TCIFP, t 7→ f(t) cos(2kxt) est intégrable sur [0,+∞[.

On e�ectue une intégration par parties sous réserve de convergence :∫ +∞

0

f(t) cos(2kxt) dt =

[
f(t)

sin(2kxt)

2kx

]+∞

t=0

−
∫ +∞

0

f ′(t)
sin(2kxt)

2kx
dt.

Comme f a pour limite 0 en +∞, il vient

[
f(t)

sin(2kxt)

2kx

]+∞

t=0

= 0, ce qui valide l'intégration par parties, et il vient∫ +∞

0

f(t) cos(2kxt) dt = −
∫ +∞

0

f ′(t)
sin(2kxt)

2kx
dt

Puis par inégalité triangulaire,

∣∣∣∣∫ +∞

0

f(t) cos(2kxt) dt

∣∣∣∣ ⩽ 1

2kx

(∫ +∞

0

|f ′(t) sin(2kxt)| dt
)
.

Or
∫ +∞

0

|f ′(t) sin(2kxt)| dt ⩽
∫ +∞

0

|f ′(t)| dt, d'où
∣∣∣∣∫ +∞

0

f(t) cos(2kxt) dt

∣∣∣∣ ⩽ 1

2kx

(∫ +∞

0

|f ′|
)
.

Q 12. Pour x > 0,
∫ +∞

0

f(t)h(xt) dt =

∫ +∞

0

+∞∑
k=1

f(t)

1− 4k2
cos(2kxt) dt. On veut intervertir les symboles

∑
et

∫
.

Pour cela, on considère la série des intégrales
∫ +∞

0

∣∣∣∣ f(t)

1− 4k2
cos(2kxt)

∣∣∣∣ dt : pour tout k ⩾ 1,∫ +∞

0

∣∣∣∣ f(t)

1− 4k2
cos(2kxt)

∣∣∣∣ dt ⩽ ∫ +∞

0

∣∣∣∣ f(t)

1− 4k2

∣∣∣∣ dt = 1

4k2 − 1

∫ +∞

0

|f |.

Donc par TCSTP, la série
∑
k⩾1

∫ +∞

0

∣∣∣∣ f(t)

1− 4k2
cos(2kxt)

∣∣∣∣ dt converge, donc on peut utiliser le th. d'intégration terme

à terme :

∣∣∣∣∫ +∞

0

f(t)h(xt) dt

∣∣∣∣ =
∣∣∣∣∣
+∞∑
k=1

∫ +∞

0

f(t)

1− 4k2
cos(2kxt) dt

∣∣∣∣∣ =
+∞∑
k=1

1

4k2 − 1

∣∣∣∣∫ +∞

0

f(t) cos(2kxt) dt

∣∣∣∣
4



puis grâce à la question précédente,∣∣∣∣∫ +∞

0

f(t)h(xt) dt

∣∣∣∣ ⩽ +∞∑
k=1

1

4k2 − 1
× 1

2kx

∫ +∞

0

|f ′(t)| dt

Donc en posant M =

+∞∑
k=1

1

2k(4k2 − 1)
×
∫ +∞

0

|f ′(t)| dt, on a

∣∣∣∣∫ +∞

0

f(t)h(xt) dt

∣∣∣∣ ⩽ M

x

Q 13. La question précédente permet d'a�rmer que lim
x→+∞

∫ +∞

0

f(t)h(xt) dt = 0 par encadrement.

Puis grâce à l'égalité admise dans l'énoncé,

f̃(x) =

∫ +∞

0

(
2

π
+

4

π
h(xt)

)
f(t) dt =

2

π

∫ +∞

0

f +
4

π

∫ +∞

0

f(t)h(xt) dt −−−−−→
x→+∞

2

π

∫ +∞

0

f

IV.

Q 14. Pour tout k ⩾ 1, d'après Q 3 d, on a lim
x→+∞

∫ +∞

0

f(t) cos(2kxt) dt = 0 (en remplaçant x par 2kx).

Donc par opérations sur les limites, pour tout N ∈ N∗, lim
x→+∞

N∑
k=1

∫ +∞

0

f(t) cos(2kxt) dt = 0.

Q 15.
a) Soit N ∈ N∗. Par inégalités triangulaires,∣∣∣∣∣

+∞∑
k=N+1

1

4k2 − 1

∫ +∞

0

f(t) cos(2kxt) dt

∣∣∣∣∣ ⩽
+∞∑

k=N+1

∣∣∣∣ 1

4k2 − 1

∫ +∞

0

f(t) cos(2kxt) dt

∣∣∣∣
⩽

+∞∑
k=N+1

1

4k2 − 1

∫ +∞

0

|f(t) cos(2kxt)| dt

⩽
+∞∑

k=N+1

1

4k2 − 1

∫ +∞

0

|f(t)| dt = M

+∞∑
k=N+1

1

4k2 − 1

b) Soit ε > 0. La série
∑
k⩾1

1

4k2 − 1
est convergente, donc son reste partiel tend vers 0 :

il existe donc N ∈ N∗ tel que M

+∞∑
k=N+1

1

4k2 − 1
⩽ ε

donc par inégalité triangulaire et la question a),∣∣∣∣∫ +∞

0

f(t)h(xt) dt

∣∣∣∣ ⩽
∣∣∣∣∣

N∑
k=1

1

4k2 − 1

∫ +∞

0

f(t) cos(2kxt) dt

∣∣∣∣∣+
∣∣∣∣∣

+∞∑
k=N+1

1

4k2 − 1

∫ +∞

0

f(t) cos(2kxt) dt

∣∣∣∣∣
⩽

∣∣∣∣∣
N∑

k=1

1

4k2 − 1

∫ +∞

0

f(t) cos(2kxt) dt

∣∣∣∣∣+ ε

Or d'après la question Q 14, il existe x0 > 0 tel que pour tout x ⩾ x0,

∣∣∣∣∣
N∑

k=1

∫ +∞

0

f(t) cos(2kxt) dt

∣∣∣∣∣ ⩽ ε

don pour tout x ⩾ x0,

∣∣∣∣∫ +∞

0

f(t)h(xt) dt

∣∣∣∣ ⩽ 2ε.

On a montré :

∀ε > 0 ∃x0 > 0 ∀x ⩾ x0

∣∣∣∣∫ +∞

0

f(t)h(xt) dt

∣∣∣∣ ⩽ 2ε

ce qui signie lim
x→+∞

∫ +∞

0

f(t)h(xt) dt = 0.

Q 16. On conclut de la même façon qu'en Q 13.
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