
Mpi Exercice hebdomadaire 5

Pour n ∈ N∗, on pose un =

n∑
k=1

(−1)k
√
k.

Q 1. Véri�er que pour tout x ⩾ 1,
√
x−

√
x− 1 =

1
√
x+

√
x− 1

.

En déduire une primitive de t 7→ 1√
t+

√
t− 1

, puis de f : t 7→ 1√
2t+

√
2t− 1

.

Q 2. Montrer que pour tout n ∈ N∗, u2n =

n∑
k=1

f(k).

Q 3. La série
∑
k⩾1

f(k) converge-t-elle ? Quelle est la limite de u2n quand n tend vers +∞ ?

Q 4. Montrer que u2n ∼
n→+∞

√
2n

2
.

Q 5. Montrer que un ∼
n→+∞

(−1)n
√
n

2
.

Q 6. On pose vn = un+2 − un. Montrer que la série
∑
n⩾1

vn converge.

En déduire l'existence d'un réel α tel que un = (−1)n
√
n

2
+ α+ o(1) quand n tend vers +∞.
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Exercice hebdomadaire 5 - Corrigé

Q 1. Soit x ⩾ 1.

(
√
x−

√
x− 1)× (

√
x+

√
x− 1) =

√
x
2 −

√
x− 1

2
= x− (x− 1) = 1 donc

√
x−

√
x− 1 =

1
√
x+

√
x− 1

.

Une primitive de t 7→ 1√
t+

√
t− 1

est donc la fonction t 7→ 2

3

(
t3/2 − (t− 1)3/2

)
.

Puis une primitive de f est t 7→ 1

3

(
(2t)3/2 − (2t− 1)3/2

)
.

Q 2. Par récurrence sur n.

Q 3.
√
2t− 1 ∼

t→+∞

√
2t donc (cas favorable de sommes d'équivalents : 1 + 1 ̸= 0)

√
2t +

√
2t− 1 ∼

t→+∞
2
√
2t donc

f(t)∼ 1

2
√
2t
.

Donc f(k) ∼
k→+∞

1

2
√
2
.

1

k1/2
donc par comparaison de séries à termes positifs, comme la série de Riemann

∑ 1

k1/2

diverge, la série
∑
k⩾1

f(k) diverge aussi. Comme il s'agit d'une série à termes positifs, ses sommes partielles divergent

donc vers +∞, donc u2n −−−−−→
n→+∞

+∞.

Q 4. La fonction f est positive, continue et décroissante sur [1,+∞[ donc on peut e�ectuer une comparaison série-
intégrale.

Pour tout k ⩾ 2,

∫ k+1

k

f ⩽ f(k) ⩽
∫ k

k−1

f donc en additionnant ces inégalités pour k variant de 2 à n, on obtient∫ n+1

2

f ⩽ u2n − 1√
2 + 1

⩽
∫ n

1

f .

Or d'après la question Q 1, on sait calculer ces deux intégrales : elles valent
1

3

(
(2n)3/2 − (2n− 1)3/2

)
et

1

3

(
(2n+ 2))3/2 − (2n+ 1)3/2

)
à une constante additive près.

Or
1

3

(
(2n)3/2 − (2n− 1)3/2

)
=

1

3
(2n)3/2

(
1−

(
1− 1

2n

)3/2
)
, or 1−

(
1− 1

2n

)3/2

= 1−
(
1− 3

2
.
1

2n
+ o

(
1

n

))
=

3

4n
+ o

(
1

n

)
∼

n→+∞

3

4n
, donc

1

3

(
(2n)3/2 − (2n− 1)3/2

)
∼

n→+∞

1

3
(2n)3/2 × 3

4n
=

√
2n

2
,

Et de même,
1

3

(
(2n+ 2))3/2 − (2n+ 1)3/2

)
∼

n→+∞

√
2n

2
, donc les deux intégrales

∫ n+1

2

f et

∫ n

1

f sont toutes deux

équivalentes à

√
2n

2
. Donc par théorème d'encadrement, u2n ∼

n→+∞

√
2n

2
.

Q 5. u2n+1 = u2n + (−1)2n+1
√
2n+ 1 = u2n −

√
2n+ 1, or u2n ∼

√
2n

2
et

√
2n+ 1∼

√
2n donc (cas favorable encore :

1

2
− 1 ̸= 0) u2n+1 ∼−

√
2n

2
.

On a donc montré u2n ∼
n→+∞

√
2n

2
et u2n+1 ∼

n→+∞
−
√
2n+ 1

2
, donc un ∼(−1)n

√
n

2
.

Q 6. vn = (−1)n
(√

n+ 2−
√
n+ 1

)
=

(−1)n√
n+ 2 +

√
n+ 1

: la suite

(
1√

n+ 2 +
√
n+ 1

)
est décroissante, positive et

converge vers 0, donc d'après le CSSA, la série
∑

vn converge, donc ses sommes partielles ont une limite �nie.

Or

n∑
k=1

vk = un+2 + un+1 − u2 − u1 donc la suite (un+2 + un+1) converge vers un réel 2α.

Donc un+1 + un = 2un + (−1)n+1
√
n+ 1 = 2α+ o(1), donc un = (−1)n

√
n+ 1

2
+α+ o(1) = (−1)n

√
n

2
+α+ o(1).
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