Mpi TD Séries
Probleme 1 - D’aprés E3A PC 2016
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1. Préliminaires : justifier la convergence des séries - — et _.
Q j g > 2 i
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I. Développement en série de In(1 + x)
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Dans cette partie, x désigne un réel tel que —1 < z < 1. Pour n € N, on pose u,, = / t"dtet s, = Z(—l)kuk.
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Q 2. Justifier que la série Z u, converge quand = < 1 et que la série converge Z(—l)"un méme si v = 1.
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Q 3. Montrer que pour tout n € N, s, =In(1 + ) — / (
0

1 .
— siz >0

Q 4. Montrer que pour tout n € N, |s, — In(1 4+ z)| < |l,|n+7% +2 .
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Q 5. En déduire l'égalité :
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II. Séries de somme In2 et leurs restes partiels
Q 6. Justifier les égalités :
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PournEN,onposeRn: W’Sﬂ: E metTn: E
k=n-+1 k=n-+1 k=n+1

L’objectif de la suite est d’obtenir un équivalent de ces trois restes partiels, afin de déterminer quelle est la meilleure série
pour calculer In 2 de maniére approchée.

Q 7. Montrer que 0 < 5,, < %HRW

Q 8. Montrer que S,, = R,, — 2R, 1 et R, = W + Ryq1.

Q 9. En déduire R, et %

Q 10. Montre que T,, = (—1)" /01 1t:t dt = 2&;22) + (n_i): /01 (ltj_tl)? dt.
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Q 11. En déduire T,, ~ (-1)
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Q 12. Montrer que S,, — 25,11 < ?Sn. En déduire un équivalent de S,,.
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Q 13. Conclure cette partie.



