
Séries numériques et vectorielles : révisions et compléments

Dans ce chapitre, E désigne un espace vectoriel normé (qui peut être R ou C), ∥ ∥ la norme associée (qui est
dans ce cas la valeur absolue ou le module).

1 Rappels

1.1 Dé�nitions et notations

Dé�nition. [Série vectorielle] Soit u une suite de E. On associe à cette suite la suite s dé�nie de la

façon suivante : pour tout n ∈ N, sn =

n∑
k=0

uk.

La suite s est appelée série de terme général un et notée
∑
n⩾0

un ou
∑

u. Chaque nombre sn est appelée

somme partielle d'indice n de la série.

L'adjectif � numérique � associé au mot � série � signi�e que les termes généraux de la série sont en fait des
nombres réels ou complexes.

Comme les séries sont des suites particulières, les opérations vectorielles sur les suites sont valables :

si u et v sont deux suites et λ, µ sont des scalaires, alors on appelle combinaison linéaire des deux séries
∑
n⩾0

un

et
∑
n⩾0

vn la série
∑
n⩾0

(λun + µvn).

1.2 Convergence d'une série

Dé�nition. Soit u une suite de E.

On dit que la série
∑

u converge si et seulement si la suite des sommes partielles (sn) =

(
n∑

k=0

uk

)
converge.

Dans ce cas, si ℓ = lim
n→+∞

sn, alors ℓ est appelée somme de la série
∑

u et on note ℓ =

+∞∑
n=0

un.

On appelle aussi reste partiel d'indice n de la série le nombre rn =

+∞∑
k=n+1

uk, de sorte que rn + sn = ℓ.

La suite des restes partiels converge donc vers 0.

Dans le cas contraire, on dit que la série
∑

u diverge.

Exemples.

� Soit x ∈ C, alors la série
∑
n⩾0

xn converge si et seulement si |x| < 1, et dans ce cas,

+∞∑
n=0

xn =
1

1− x
. Cette

série est appelée série géométrique de raison x. Plus généralement, si |x| < 1, alors pour tout n ∈ N,
+∞∑
k=n

xk =
xn

1− x
.

� Les séries de Riemann :
∑
n⩾1

1

nα
converge si et seulement si α > 1.

� Pour tout z ∈ C, la série
∑ zn

n!
converge et

+∞∑
n=0

zn

n!
= ez.

Remarque. Veillez à ne pas confondre la signi�cation des symboles (malheureusement, les sujets de concours
ne sont pas toujours aussi rigoureux).
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�
∑

un désigne un objet abstrait, en l'occurrence une suite de vecteurs :

(u0, u0 + u1, u0 + u1 + u2, . . . , u0 + u1 + . . .+ un, . . .

Ce symbole est toujours dé�ni.

�

n∑
k=0

uk désigne un vecteur, il est toujours dé�ni : c'est une vraie somme au sens habituel, toutes les règles

de calcul usuelles sur les sommes s'appliquent.

�

+∞∑
n=0

un désigne un vecteur uniquement dans le cas où la série
∑

un converge, ce n'est pas une � vraie �

somme, c'est une limite, donc il est à utiliser avec précaution.

Autrement dit (dans les cas les plus courants, i.e. dans un cadre numérique),
∑

un sert à nommer une suite

de nombres : ce n'est donc pas une vraie somme au sens numérique, ce symbole n'a rien à faire dans un calcul
numérique, il apparaît dans les phrases.

En revanche, quand il est dé�ni, le symbole

+∞∑
n=0

un est un nombre et n'est pas la série lui-même : il apparaît

dans les calculs.

On peut bien sûr généraliser aux séries quelques théorèmes d'opérations.

Proposition 1. Soit u, v deux suites de E et λ un scalaire.

Si les séries
∑

u et
∑

v convergent,

alors la série
∑

(u+ λv) converge et

+∞∑
n=0

(un + λvn) =

+∞∑
n=0

un + λ

+∞∑
n=0

vn.

Ceci prouve aussi que l'ensemble des séries convergentes est un K-espace vectoriel.

Remarque. La somme d'une série divergente et d'une série convergente est une série divergente.

En revanche, il n'y a rien à dire a priori à propos de la somme de deux séries divergentes.

1.3 Lien entre convergence de suites et convergence de séries

Proposition 2. Soit u une suite de E.

Si la série
∑

u converge, alors la suite u converge vers 0.

Remarque.

� La réciproque est fausse !
� Par contraposition, si une suite u ne tend pas vers 0, alors la série associée diverge : on dit que la série∑

u diverge grossièrement.

Exemples.

� On appelle série harmonique la série
∑
n⩾1

1

n
. Cette série diverge, pourtant son terme général tend vers 0.

Dé�nition. Soit u une suite de E. On pose vn = un+1 − un.

La série
∑

v est appelée la série télescopique (ou série domino, ou série di�érence) associée à u.

Proposition 3. Une suite converge si et seulement si sa série télescopique associée converge.
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Exercices :

1) On pose un =

n∑
k=1

1

k
− lnn. Montrez que la suite u converge.

2 Séries réelles à termes positifs

Dans cette partie, on s'intéresse uniquement aux séries dont le terme général est un réel positif.

On rappelle un premier théorème issu du cours de Première Année.

Théorème 1. Soit u, v deux suites réelles positives.

▷ Si 0 ⩽ u ⩽ v et si la série
∑

v converge, alors la série
∑

u converge.

▷ Si 0 ⩽ u ⩽ v et si la série
∑

u diverge, alors la série
∑

v diverge.

▷ Si u ∼ v, alors les séries
∑

u et
∑

v sont de même nature.

Remarque. On compare les termes généraux des séries, pas les sommes partielles !

Une application classique : la règle de d'Alembert.

Proposition 4. Soit u une suite réelle strictement positive, telle que
un+1

un
−−−−−→

n→+∞
ℓ. Alors

▷ si ℓ < 1, la série
∑

u converge ;

▷ si ℓ > 1, la série
∑

u diverge (grossièrement) ;

▷ si ℓ = 1, on ne peut rien conclure.

Exercices :

2) Soit x, y > 0. Représentez graphiquement l'ensemble des couples (x, y) tels que la série
∑ xn

yn + nx
converge.

3) Montrez que la suite (un) dé�nie par u0 ∈ [0, 1[ et un+1 =
1

2
(un + u2

n) converge vers 0 et donnez la nature de la

série
∑

un.

On donne quelques versions plus élaborées du th. de comparaison dans la suite du chapitre.

2.1 Théorème de Cesaro

Théorème 2. Soit u une suite numérique, qui converge vers ℓ. Alors
u0 + . . .+ un

n
−−−−−→

n→+∞
ℓ.

Dans le cas où ℓ ̸= 0, alors la série
∑

u diverge grossièrement et

n∑
k=0

uk ∼
n→+∞

nℓ.

Dans le cas où ℓ = 0, alors on peut juste dire

n∑
k=0

uk = o(n).

Exercices :

4) Soit u la suite dé�nie par récurrence par u0 > 0 et pour tout n ∈ N, un+1 = un +
un + 1

un + 2
.

Étudiez la convergence ou divergence de la suite u, puis donnez un équivalent simple de un quand n → +∞.

2.2 Théorème de comparaison par domination de séries à termes positifs

Dans le cas convergent d'abord, les restes partiels suivent la même relation de comparaison.

Théorème 3. Soit u, v deux suites réelles positives.

Si u = O(v) et la série
∑

v converge, alors la série
∑

u converge. De plus,

+∞∑
k=n+1

uk = O

(
+∞∑

k=n+1

vk

)
.
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Si u = o(v) et la série
∑

v converge, alors la série
∑

u converge. De plus,

+∞∑
k=n+1

uk = o

(
+∞∑

k=n+1

vk

)
.

Dans le cas divergent ensuite, les sommes partielles suivent aussi la même relation de comparaison.

Théorème 4. Soit u, v deux suites réelles positives.

Si u = O(v) et la série
∑

u diverge, alors la série
∑

v diverge. De plus,

n∑
k=0

uk = O

(
n∑

k=0

vk

)
.

Si u = o(v) et la série
∑

u diverge, alors la série
∑

v diverge. De plus,

n∑
k=0

uk = o

(
n∑

k=0

vk

)
.

2.3 Théorème de comparaison par équivalence de séries à termes positifs

Théorème 5. Soit u, v deux suites réelles positives.

Si u ∼ v et u ⩾ 0, alors les séries
∑

u et
∑

v sont de même nature : l'une converge si et seulement si

l'autre converge.

De plus,

▷ si les séries convergent, alors les restes partiels sont équivalents :

+∞∑
k=n+1

uk ∼
n→+∞

+∞∑
k=n+1

vk ;

▷ si les séries divergent, alors les sommes partielles divergent vers +∞ et sont équivalentes :
n∑

k=0

uk ∼
n→+∞

n∑
k=0

vk.

Exercices :

5) Soit a ∈ ]0, 1]. On pose un = sin
an

n
pour n ∈ N∗. Selon la valeur de a, déterminez la nature de la série

∑
n⩾1

un.

Montrez que si a = 1, alors
n∑

k=1

uk ∼ lnn et si a < 1,
+∞∑
k=n

uk = o(an).

2.4 Théorème de comparaison série - intégrale

Proposition 5. Soit f une fonction positive et décroissante sur R+.

Alors la série de terme général f(n) et la suite de terme général

∫ n

0

f sont de même nature.

À retenir : la technique d'encadrement des sommes partielles d'une série
∑

f(n) (ou des restes partiels) par

des intégrales quand f est positive et monotone.

Faites un dessin !

Exemples.

�

n∑
k=1

1

k
∼

n→+∞
lnn (à connaître !).

� Si α > 1, un équivalent simple de

+∞∑
k=n+1

1

kα
quand n → +∞ est

1

(α− 1)nα−1
.

Exercices :

6) Pour n ∈ N∗, on pose un =

+∞∑
k=n

ln k

k2
.

Justi�ez l'existence de un, puis montrez la divergence de la série
∑

un. Montrez que
n∑

k=1

uk ∼
n→+∞

(lnn)2

2
.
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3 Séries absolument convergentes

Dé�nition. Soit u une suite de E.

On dit que la série
∑

u est absolument convergente si et seulement si la série à termes positifs
∑

∥u∥ est

une série convergente.

3.1 Lien entre absolue convergence et convergence

Théorème 6. Si E est de dimension �nie, alors toute série absolument convergente est convergente.

Remarque.

� La réciproque est fausse : la série
∑
n⩾1

(−1)n

n
converge (on l'appelle la série harmonique alternée) mais ne

converge pas absolument.
� L'hypothèse de la dimension �nie est indispensable. En dimension in�nie, ce résultat est faux en général.

Exercices :

7) Soit x > 0. Montrez que les séries
∑
n⩾2

ln(n2 + (−1)nn)

n2 + (−1)nxn
,
∑
n⩾0

√
n cos(x) sinn(x),

∑
n⩾0

(−1)n
√
n+ x

xn + n2/x
convergent.

3.2 Un exemple fondamental : l'exponentielle de matrice.

Soit p ∈ N∗. On choisit comme norme sur E = Mp(C) une norme sous-multiplicative. Alors pour tout n ∈ N∗,

∥An∥ ⩽ ∥A∥n, donc
∥∥∥∥An

n!

∥∥∥∥ ⩽
∥A∥n

n!
.

Or la série
∑ ∥A∥n

n!
converge (et sa somme vaut exp ∥A∥), donc par comparaison de séries à termes positifs, la

série
∑ An

n!
est absolument convergente. On pose alors expA =

+∞∑
n=0

An

n!
.

3.3 Extension des résultats par comparaison

Dé�nition. Soit u une suite de E et v une suite réelle positive.

On dit que u = O(v) quand ∃M > 0 ∃n0 ∈ N ∀n ⩾ n0 ∥un∥ ⩽ Mvn.

On dit que u = o(v) quand ∀ε > 0 ∃n0 ∈ N ∀n ⩾ n0 ∥un∥ ⩽ εvn.

Proposition 6. Soit u une suite de E, v une suite réelle positive.

Si E est de dimension �nie, un = O(vn) quand n tend vers +∞ et la série
∑

v converge, alors la série∑
u est absolument convergente.

De plus,

+∞∑
k=n+1

uk = O

(
+∞∑

k=n+1

vk

)
.

Ceci est encore valable si un = o(vn).

Proposition 7. Soit u une suite de E, v une suite réelle positive.

Si E est de dimension �nie, un = o(vn) quand n tend vers +∞ et la série
∑

v converge, alors la série∑
u est absolument convergente.

De plus,

+∞∑
k=n+1

uk = o

(
+∞∑

k=n+1

vk

)
.
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3.4 Produit de Cauchy de deux séries absolument convergentes

Dé�nition. Soit E une algèbre normée de dimension �nie,
∑
n⩾0

an et
∑
n⩾0

bn deux séries à termes dans E.

On appelle produit de Cauchy des deux séries la série
∑
n⩾0

cn où pour tout n ∈ N, cn =

n∑
k=0

akbn−k.

Remarque. Quand les séries ne commencent pas à partir du rang 0, il faut se mé�er ! Une idée simple est de
se ramener au cas précédent en décalant les indices. Ou alors on ajoute aux suites des premiers termes �ctifs
nuls.

Exemple très courant : les séries commencent au rang 1. Dans ce cas, le produit de Cauchy des séries
∑
n⩾1

an et

∑
n⩾1

bn est la série
∑
n⩾2

cn où pour tout n ∈ N∗, cn =

n∑
k=1

akbn+1−k.

Théorème 7. Avec les mêmes hypothèses sur E.

Si les séries
∑
n⩾0

an et
∑
n⩾0

bn sont absolument convergentes, alors leur produit de Cauchy est aussi absolu-

ment convergent et
+∞∑
n=0

cn =

+∞∑
n=0

an ×
+∞∑
n=0

bn

4 Séries alternées

Dé�nition. Une série alternée est une série réelle
∑

un telle que pour tout n ∈ N, un+1 est de signe
opposé à un.

En général, les séries alternées sont reconnaissables à la présence d'un facteur (−1)n dans l'expression du terme
général.

On dispose d'une condition su�sante de convergence d'une série alternée (qu'on appelle le critère spécial des
séries alternées).

Théorème 8. Soit
∑

(−1)nun une série alternée.

Si la suite u
� est positive,
� est décroissante,
� et converge vers 0,

alors la série
∑

(−1)nun converge.

Dans ce cas, la somme de la série est positive, et si on note Rn =

+∞∑
k=n+1

(−1)kuk le reste partiel d'indice n,

alors pour tout n ∈ N, Rn est du signe de son premier terme ( i.e. du signe de (−1)n+1) et |Rn| ⩽ un+1 ⩽ un.

Exemples.

� La série harmonique alternée
∑
n⩾1

(−1)n

n
converge.

� La série
∑
n⩾2

(−1)n

lnn
converge.

Remarque.

� Si
∑
n⩾n0

(−1)nun est une série alternée convergente, sa somme a le signe du premier terme de la série (ici

le signe de (−1)n0un0
).
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� La condition de décroissance de la suite u est essentielle ! Contre-exemple : la série
∑
n⩾2

(−1)n

(−1)n +
√
n

est

une série alternée divergente.

De plus, cela fournit un contre-exemple au théorème de comparaison par équivalents si on ne tient pas
compte de la condition sur le signe, qui doit être constant.

Exercices :

8) Soit α > 1. Pour n ∈ N∗, on pose un =

+∞∑
k=n

(−1)k

kα + k
.

Justi�ez l'existence de un. Montrez que la série
∑
n⩾1

un converge.
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