
Mpi Devoir surveillé 2 - sujet Mines-Ponts - Centrale

Problème inspiré par le sujet Mines-Ponts 2 - MP - 2017

Problème 1

Dans ce problème, E est un R-espace vectoriel de dimension �nie, muni d'une norme ∥ ∥.

Si a ∈ E et r est un réel strictement positif, on note B(a, r) la boule ouverte de centre a et de rayon r :
B(a, r) = {x ∈ E

/
∥x− a∥ < r}.

Les deux premières parties sont indépendantes. La troisième utilise les résultats des parties I et II. La partie IV utilise les
résultats de la partie III.

I. Stabilité des parties convexes par barycentration positive

On rappelle qu'une partie A de E est dite convexe quand elle véri�e

∀(a, b) ∈ A2 ∀t ∈ [0, 1] ta+ (1− t)b ∈ A

Q 1.

a) Soit (a1, . . . , an) ∈ En et (t1, . . . , tn) ∈ [0, 1]n tel que

n∑
i=1

ti = 1.

Montrez que si s =
n−1∑
i=0

ti ̸= 0 et b =
1

s

n−1∑
i=1

tiai, alors il existe λ ∈ [0, 1] tel que

n∑
i=1

tiai = λb+ (1− λ)an.

b) Soit A une partie convexe de E. Montrez la proposition suivante :

pour tout n ∈ N∗, pour tout (a1, . . . , an) ∈ An et pour tout (t1, . . . , tn) ∈ [0, 1]n, si

n∑
i=1

ti = 1, alors

n∑
i=1

tiai ∈ A.

Remarque : tout vecteur qui peut s'écrire

n∑
i=1

tiai où

n∑
i=1

ti = 1 s'appelle le barycentre de la famille (ai, ti)⩽i⩽n. On a donc

montré que toute partie convexe est stable par barycentration positive (ici les coe�cients ti sont tous positifs).

II. Compacité

Dans cette partie, K est un compact de E.

Soit (Ai)i∈I une famille de parties de E. On dit que cette famille est un recouvrement de K quand K ⊂
⋃
i∈I

Ai.

L'objet de cette partie est de montrer la proposition suivante (dite propriété de Borel-Lebesgue) :

si (Ωi)i∈I est une famille d'ouverts et un recouvrement de K, alors il existe une partie �nie J de I telle que (Ωi)i∈J est
aussi un recouvrement de K.

Q 2. Montrez l'existence de δ(K) = sup
(x,y)∈K2

∥x− y∥ (diamètre de K).

Q 3. Soit ε > 0 et (un) une suite de E telle que pour tout (n, p) ∈ N2, si n ̸= p, alors ∥un − up∥ > ε. Montrez que (un)
n'a aucune valeur d'adhérence.

Q 4. Montrez que pour tout r > 0, il existe n ∈ N∗ et (x1, . . . , xn) ∈ Kn tel que K ⊂
n⋃

i=1

B(xi, r). Indication : procéder

par l'absurde et construire une suite qui permette d'utiliser la question précédente.

Q 5. Soit (un) une suite de E qui converge vers ℓ et r > 0. Montrez qu'il existe α > 0 et N ∈ N tel que pour tout n ⩾ N ,
B(un, α) ⊂ B(ℓ, r).

Q 6. Soit (Ωi)i∈I une famille d'ouverts qui est un recouvrement de K. Montrez la proposition suivante :

∃α > 0 ∀x ∈ K ∃i ∈ I B(x, α) ⊂ Ωi

(on pourra procéder par l'absurde et construire une suite de K qui ne possède aucune valeur d'adhérence)
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Q 7. Concluez : montrez la propriété de Borel-Lebesgue.

Q 8. Soit (Fi)i∈I une famille de fermés de K telle que
⋂
i∈I

Fi = ∅. Montrez qu'il existe une partie �nie J de I telle que⋂
i∈J

Fi = ∅.

III. Théorème du point �xe de Markov-Kakutani

Dans cette partie, la norme de E est la norme euclidienne associée à un produit scalaire ( | ), G est un sous-groupe compact
de GL(E) et K une partie non vide, compacte et convexe de E.

Pour x ∈ E, on pose NG(x) = sup
u∈G
∥u(x)∥.

Q 9. Montrez que NG est bien dé�nie et qu'elle est une norme sur E. Montrez que pour x ∈ E, l'application u 7→ u(x)
est continue sur G.

Q 10. Montrez que NG véri�e en outre les deux propriétés suivantes :
� pour tout x ∈ E et u ∈ G, NG(u(x)) = NG(x) ;
� pour tout (x, y) ∈ E2 et x ̸= 0, NG(x+ y) = NG(x) +NG(y) si et seulement si y = λx où λ ∈ R+ ;

on rappelle l'inégalité de Cauchy-Schwarz : (x|y) ⩽ ∥x∥ ∥y∥ avec égalité si et seulement si y = λx où λ ∈ R+.

Q 11. Dans cette question, on suppose que u est un élément de L (E) tel que u(K) ⊂ K.

Pour x ∈ K et n ∈ N∗, on pose xn =
1

n

n−1∑
i=0

ui(x).

Montrez que la suite (xn) est à termes dans K, puis qu'elle a une valeur d'adhérence a ∈ K. Montrez aussi que

pour tout n ∈ N∗, ∥u(xn)− xn∥ ⩽
δ(K)

n
. Déduisez-en que a est un point �xe de u (i.e. u(a) = a).

Dans les question suivantes, on suppose que K est stable par tous les éléments de G. Soit r ∈ N∗, u1, . . . , ur r éléments

de G et on pose u =
1

r

r∑
i=1

ui.

Q 12. Montrez que K est stable par u et déduisez-en l'existence d'un élément a de K tel que u(a) = a.

Q 13. Montrez que NG(u(a)) =
1

r

r∑
i=1

NG(ui(a)).

Déduisez-en que pour tout j ∈ {1, . . . , r}, NG

uj(a) + r∑
i=1
i ̸=j

ui(a)

 = NG (uj(a)) +

r∑
i=1
i ̸=j

NG (ui(a)).

Q 14. Déduisez-en, pour tout j ∈ {1, . . . , r}, l'existence d'un réel λj ⩾ 0 tel que u(a) =
λj + 1

r
uj(a).

Q 15. Déduisez-en que a est un point �xe de tous les endomorphismes u1, . . . , ur.

Q 16. En utilisant la question 8, montrez qu'il existe a ∈ K tel que pour tout u ∈ G, u(a) = a.

IV.

Si N = dimE et F est une partie de E, on note Conv(F ) l'intersection de toutes les parties convexes qui contiennent F :
c'est le plus petit convexe de E qui contient F , appelé enveloppe convexe de F . On admet :

Conv(F ) =

{
N+1∑
i=1

tiai
/
(a1, . . . , aN+1) ∈ EN+1, (t1, . . . , tN+1) ∈ [0, 1]N+1,

N+1∑
i=1

ti = 1

}

Dans la suite, n désigne un entier naturel non nul. On rappelle que On(R) est l'ensemble des matrices orthogonales de
Mn(R), i.e. les matrices A ∈Mn(R) telles que ATA = In et que l'application (A,B) 7→ tr(ATB) est un produit scalaire
sur Mn(R).

On pose S++
n = {ATA

/
A ∈Mn(R)}. On admet que S++

n est une partie convexe de Mn(R).

�-
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Soit G un sous groupe compact de GLn(R).

Si A ∈ G, on dé�nit l'application ρA de Mn(R) dans lui même par la formule ρA(M) = ATMA. On véri�e facilement, et
on l'admet, que pour tout M ∈Mn(R), l'application qui à A ∈ G associe ρA(M) est continue.

On note H = {ρA
/
A ∈ G}, ∆ = {ATA

/
A ∈ G} et K = Conv(∆).

Q 17. Montrer que ρA ∈ GL(Mn(R)) et que H est un sous-groupe compact de GL(Mn(R)).

Q 18. Montrer que ∆ est un compact contenu dans S++
n (R) et que K est un sous-ensemble compact de S++

n (R) qui est
stable par tous les éléments de H.

Q 19. Montrer qu'il existe M ∈ K tel que pour tout A ∈ G, ρA(M) = M . En déduire l'existence de N ∈ GLn(R)
tel que pour tout A ∈ G, NAN−1 ∈ On(R). En déduire en�n qu'il existe un sous-groupe G1 de On(R) tel que
G = N−1G1N = {N−1BN

/
B ∈ G1}.

Soit K un sous-groupe compact de GLn(R) qui contient On(R), et N ∈ GLn(R) tel que NKN−1 ⊆ On(R). On désigne
par g l'automorphisme de Rn de matrice N dans la base canonique de Rn, par P un hyperplan de Rn et par σP la symétrie
orthogonale par rapport à P .

Q 20. Montrer que g ◦ σP ◦ g−1 est une symétrie, puis que c'est un endomorphisme orthogonal de Rn. En déduire que
g ◦ σP ◦ g−1 = σg(P ). Montrer que g conserve l'orthogonalité et en déduire K.
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Devoir surveillé 2 - sujet Mines-Ponts - Centrale - Corrigé

Problème 1

Ce corrigé est inspiré par celui d'Edouard Lucas (MPI - lycée Montaigne), merci à lui.

I.

Q 1.

a) Il su�t de poser λ = 1− tn.
b) Par recurrence sur n. On appelle P(n) le prédicat :

� pour tout (a1, . . . , an) ∈ An et pour tout (t1, . . . , tn) ∈ [0, 1]n, si

n∑
i=1

ti = 1, alors

n∑
i=1

tiai ∈ A �.

Pour n = 1, P(1) est trivialement vraie. Pour n = 2, il s'agit simplement de la dé�ntion de partie convexe.

Si P(n− 1) est vraie, alors soit (a1, . . . , an) ∈ An et (t1, . . . , tn) ∈ [0, 1]n tel que

n∑
i=1

ti = 1,

premier cas : si

n−1∑
i=0

ti ̸= 0, alors on pose b =
1

s

n−1∑
i=1

tiai ; comme la somme des (n − 1) coe�cients de cette somme

vaut 1 et qu'ils sont tous positifs, d'après l'hypothèse de récurrence, on a b ∈ A ; or d'après la question précédente

on peut écrire

n∑
i=1

tiai = λb+ (1− λ)an où λ ∈ [0, 1], donc comme b et an sont dans A et que A est convexe, on

en déduit que

n∑
i=1

tiai ∈ A ;

deuxième cas : si

n−1∑
i=0

ti = 0, alors comme il s'agit d'une somme de réels positifs, tous ces réels sont nuls donc il

reste

n∑
i=1

tiai = tnan = an ∈ A.

Dans les deux cas, on a ce qu'on veut, donc P(n) est vraie.
D'après le principe de récurrence, pour tout n ∈ N∗, P(n) est vraie.

II.

Q 2. K est un compact donc une partie bornée. Donc il existe R > 0 tel que K ⊂ B(0, R), donc pour tout (x, y) ∈ K2,
∥x− y∥ ⩽ ∥x∥+ ∥y∥ ⩽ 2R. La fonction (x, y) 7→ ∥x− y∥ est donc majorée sur K2, donc δ(K) existe (propriété de
la borne supérieure).

Q 3. Par l'absurde, on suppose qu'il existe une suite extraite
(
xφ(n)

)
convergente. Ainsi la suite

(
xφ(n+1) − xφ(n)

)
converge vers 0, ceci nous fournit N ∈ N tel que pour tout p ⩾ N , on ait ∥xφ(p+1) − xφ(p)∥ ⩾ ε. Contradiction.

Ainsi cette suite n'admet aucune suite extraite convergente

Q 4. Par l'absurde, on suppose que la propriété à démontrer est fausse.

Ceci nous fournit ε > 0 tel que pour tout p ∈ N∗ et x1, . . . , xp éléments de E on ait K ̸⊂
p⋃

i=1

B(xi, ε).

On va construire par récurrence une suite (xk)k⩾1 à valeurs dans K telle que pour tout n ̸= p, on ait ∥xp−xn∥ ⩾ ε.
On choisit un élément x0 ∈ K. Par hypothèse, on a K ̸⊂ B(x0, ε), ce qui nous fournit x1 ∈ K \B(x0, ε).

Soit k ∈ N. On suppose construits x0, . . . , xk ∈ K tel que pour tout (n, p) ∈ [[1, k]]
2
tel que n ̸= p, on a ∥xp−xn∥ ⩾ ε.

On a alors K ̸⊂
p⋃

i=0

B(xi, ε), donc il existe xk+1 ∈ K tel que xk+1 ̸∈
p⋃

i=0

B(xi, ε), donc pour tout n ∈ [[1, k]],

∥xk+1 − xn∥ ⩾ ε.

Par récurrence, on a donc construit la suite voulue, qui véri�e pour tout (n, p) ∈ [[1, k + 1]]
2
tel que n ̸= p,

∥xp − xn∥ ⩾ ε.
La suite ainsi construite (xk)k⩾0 véri�e pour tout entiers naturels n ̸= p, on a ∥xp − xn∥ ⩾ ε. D'après la question
précédente, cette suite n'admet pas de valeur d'adhérence. Or il s'agit d'une suite à valeurs dans le compact K, ce
qui est absurde.

Ainsi pour tout réel ε > 0, il existe un entier p > 0 et x1, . . . , xp éléments de E tels que K ⊆
p⋃

i=1

B(xi, ε)
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Q 5. On pose α =
r

2
> 0. La suite (un) converge vers ℓ, donc il existe N ∈ N tel que pour tout n ⩾ N , ∥un − ℓ∥ ⩽ α.

Donc pour tout n ⩾ N et x ∈ B(un, α), ∥x− ℓ∥ ⩽ ∥x− un∥+ ∥un − ℓ∥ < α+ α = r, donc B(un, α) ⊂ B(ℓ, r).

Q 6. Par l'absurde, on suppose que pour tout réel α > 0, il existe x ∈ K, tel que pour tout i ∈ I, on ait B(x, α) ̸⊂ Ωi.
On spécialise α← 1/n.
Ainsi pour n ∈ N∗, ceci nous fournit xn ∈ K tel que pour tout i ∈ I, on ait B(xn, 1/n) ̸⊂ Ωi.
La suite (xn) à valeurs dans le compact K admet une extractrice φ telle que (xφ(n)) qui converge vers une valeur

d'adhérence ℓ ∈ K. Comme K ⊆
⋃
i∈I

Ωi, ceci nous fournit j ∈ I tel que ℓ ∈ Ωj .

Comme Ωj est un ouvert, ceci nous fournit r > 0 tel que B(ℓ, r) ⊂ Ωj .
Comme (xφ(n)) converge vers ℓ, d'après la question précédente, il existe N1 ∈ N et β > 0 tel que ∀n ⩾ N1,
B(xφ(n), β) ⊂ Ωj .

Or φ(n) −−−−−→
n→+∞

+∞, donc il existe N2 ∈ N tel que ∀n ⩾ N2,
1

φ(n)
< β.

Donc pour tout n ⩾ max(N1, N2), B(xφ(n), 1/φ(n)) ⊂ B(xφ(n), β) ⊂ B(ℓ, r), ce qui absurde par construction de la
suite (xn).

Ainsi il existe un réel α > 0 tel que pour tout x ∈ K, il existe i ∈ I tel que B(x, α) ⊂ Ωi .

Q 7. K étant compact, la question précédente donne l'existence d'un réel α > 0 tel que pour tout x ∈ K, il existe ix ∈ I
tel que x ∈ B(x, α) ⊂ Ωix .

D'après la question 4, il existe n ∈ N∗ et (x1, . . . , xn) ∈ Kn tel que K ⊂
n⋃

k=1

B(xk, α) donc K ⊂
n⋃

k=1

Ωixk
.

D'où l'existence d'une sous-famille �nie (Ωi1 , . . . ,Ωip) de la famille (Ωi)i∈I telle que K ⊆
p⋃

k=1

Ωik .

Q 8. On note pour i ∈ I, Oi = E \ Fi qui est un ouvert de E par complémentaire, et on a K ⊆
⋃
i∈I

Oi.

La question précédente nous fournit une sous famille �nie (Oi1 , . . . , Oip) telle que K ⊆
p⋃

k=1

Oik . On a donc par

passage au complémentaire

p⋂
k=1

Fik ⊂ E \K.

Comme pour tout i ∈ I, on a Fi ⊂ K, on a donc

p⋂
k=1

Fik = ∅ .

III.

Q 9.
� L'application u ∈ L (E) 7−→ u(x) ∈ E est linéaire et L (E) est de dimension �nie (dimE)2, donc elle est continue.

Ainsi cette application est bornée sur le compact G d'après le th. des bornes atteintes,

d'où l'existence dans R+ de NG(x) = sup
u∈G
∥u(x)∥.

� Soit (x, y) ∈ E2. Pour tout u ∈ G, ∥u(x+ y)∥ = ∥u(x) + u(y)∥ ⩽ ∥u(x)∥+ ∥u(y)∥ ⩽ NG(x) +NG(y).

Comme c'est vrai pour tout u ∈ G, on a bien NG(x+ y) ⩽ NG(x) +NG(y)
� La multiplication par un réel positif est croissante donc elle conserve l'ordre des inégalités et donc en particulier les

bornes supérieures,

donc pour tout λ ∈ R, NG(λx) = sup
u∈G
|u(λx)| = sup

u∈G
|λu(x)| = sup

u∈G
|λ|.|u(x)| = |λ| sup

u∈G
|u(x)| = |λ|NG(x)

� Si NG(x) = 0, alors ∀u ∈ G, ∥u(x)∥ = 0 : en particulier pour u = IdE car G sous groupe de GL(E), donc x = 0

On a montré que NG est bien dé�nie et que c'est une norme sur E .

Q 10.
� Soit u ∈ G et x ∈ E.

L'application v 7−→ v ◦ u est une bijection du groupe G dans lui-même de bijection réciproque v 7−→ v ◦ u−1

donc NG(u(x)) = sup
v∈G
∥v ◦ u(x)∥ = sup

w∈G
∥w(x)∥ = NG(x).

Ainsi pour tous u ∈ G et x ∈ E, NG(u(x)) = NG(x)
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� Soit x, y ∈ E tel que x est non nul.

⇐ : On suppose qu'il existe λ ∈ R+ tel que λx = y.

Pour tout u ∈ G, on a ∥u(x + y)∥ = (1 + λ) · ∥u(x)∥ car 1 + λ ⩾ 0. En faisant comme pour l'homogénéité, on
obtient : NG(x+ y) = (1 + λ)NG(x) donc NG(x+ y) = NG(x) +NG(y) car λ ⩾ 0 et NG est une norme.

⇒ : On suppose que NG(x+ y) = NG(x) +NG(y).

Le théorème des bornes atteintes avec l'application continue dé�nie sur le compact G : u 7−→ ∥u(x)∥ nous fournit
v ∈ G tel que NG(x+ y) = ∥v(x+ y)∥

On note x′ = v(x) et y′ = v(y) de sorte que NG(x+ y) = ∥x′ + y′∥ et avec ce qui précède, on a NG(x) +NG(y) =
NG(x

′) +NG(y
′) donc ∥x′ + y′∥ = NG(x

′) +NG(y
′).

Ainsi NG(x
′) +NG(y

′) ⩽ ∥x′∥+ ∥y′∥ en utilisant l'inégalité triangulaire pour ∥ · ∥

or NG(x
′) ⩾ ∥x′∥ et NG(y

′) ⩾ ∥y′∥ car IdE ∈ G donc ∥x′ + y′∥ = NG(x
′) +NG(y

′) = ∥x′∥+ ∥y′∥.

En élevant au carré on trouve après simpli�cation : 2(x′ | y′) = 2∥x′∥ × ∥y′∥ (*)

donc (x′, y′) lié d'après le cas d'égalité de l'inégalité de Cauchy-Schwarz

comme x′ ̸= 0 car v ∈ GL(E), ceci nous fournit λ ∈ R+ tel que λx′ = y′ (**)

En appliquant v−1 à (**), on a : λx = y.

Conclusion :

pour tous x, y ∈ E avec x non nul, NG(x+ y) = NG(x) +NG(y) si et seulement si λx = y où λ ∈ R+

Q 11. Soit x ∈ K. Comme K est stable par u, on montre par récurrence sur i que ui(x) ∈ K pour tout i ∈ N. Ainsi
d'après la partie I, comme K est convexe, on a xn ∈ K.
Ainsi comme K est compact :

la suite (xn)n∈N∗ est à valeurs dans K et admet une suite extraite convergente vers un élément a de K

Soit n ∈ N∗. On a ∥u(xn)− xn∥ =
1

n
∥un(x)− x∥ donc ∥u(xn)− xn∥ ⩽

δ(K)

n
car x et un(x) ∈ K

Notons φ une extractrice telle que
(
xφ(n)

)
n∈N∗ converge vers a.

Alors pour tout n ∈ N∗, on a : ∥u(xφ(n))− xφ(n)∥ ⩽
δ(K)

φ(n)
et de plus

δ(K)

φ(n)
−−−−−→

n→+∞
0.

Comme l'application y 7→ u(y)− y est continue (linéaire en dimension �nie), alors
(
u(xφ(n))− xφ(n)

)
converge vers

u(a)− a = 0, ainsi l'élément a de K est un point �xe de u

Q 12. Soit x ∈ K. Alors pour tout i ∈ [[1, r]], ui(x) ∈ K. Or u(x) =
1

r

r∑
i=1

ui(x) et K est convexe donc d'après la

question 1b de la partie I, u(x) ∈ K. Comme u ∈ L (E) le résultat de la question précédente permet d'en déduire :

l'existence de a ∈ K tel que u(a) = a .

Q 13. Comme u(a) = a, on a NG

(
1

r

r∑
i=1

ui(a)

)
= NG (u(a)) = NG(a)

et d'après le premier point de la question 10, on a NG(ui(a)) = NG(a) pour tout i ∈ [[1, r]], d'où

1

r

r∑
i=1

NG(ui(a)) =
r

r
NG(a). On a bien NG

(
1

r

r∑
i=1

ui(a)

)
=

1

r

r∑
i=1

NG(ui(a)) .

Ainsi par homogénéité : NG

(
r∑

i=1

ui(a)

)
=

r∑
i=1

NG(ui(a)) car r ⩾ 0

Soit j ∈ {1, . . . , r}. Avec ce qui précède et en utilisant l'inégalité triangulaire pour NG, on a :

NG

uj(a) + r∑
i=1
i̸=j

ui(a)

 ⩽ NG(uj(a)) +NG

 r∑
i=1
i ̸=j

ui(a)

 ⩽
r∑

i=1

NG (ui(a)) = NG

uj(a) + r∑
i=1
i ̸=j

ui(a)



donc on a bien NG

uj(a) + r∑
i=1
i̸=j

ui(a)

 = NG(uj(a)) +NG

 r∑
i=1
i ̸=j

ui(a)

 .

Q 14. Soit j ∈ {1, . . . , r}. On suppose dans un premier temps que uj(a) est un vecteur non nul de E.
En appliquant le deuxième point de 10 à l'égalité précédente, on obtient l'existence de λj ⩾ 0 tel que

3



r∑
i=1
i̸=j

ui(a) = λjuj(a), donc ru(x) = λjuj(a) + uj(a) ce qui permet de conclure dans ce cas car r > 0.

Dans un deuxième temps, si uj(a) est le vecteur nul de E alors a = 0 car uj ∈ GL(E), et en prenant λj = 1 on a

u(a) = 0 et
λj + 1

r
uj(a) = 0 car u et uj linéaires,

pour tout j ∈ {1, . . . , r}, on a l'existence d'un nombre réel λj ⩾ 0 tel que u(a) =
λj + 1

r
uj(a) dans tous les cas.

Q 15. On suppose par l'absurde qu'il existe i ∈ {1, . . . , r} tel que a ne soit pas un point �xe de l'endomorphisme ui.

On a : a = u(a) =
λi + 1

r
ui(a) donc ui(a) = µa où µ =

r

λi + 1
> 0 car r > 0 et λi ⩾ 0. On a donc µ ̸= 1 et a ̸= 0.

Premier cas : si µ > 1, alors pour tout k ∈ N, uki (a) = µka

Comme K est stable par ui alors la suite (uki (a))k est à valeurs dans K (récurrence immédiate)

Comme K est bornée car compact, alors cette suite est bornée. Or ∥uki (a)∥ = µk · ∥a∥ −→
k→+∞

+∞

Absurde.

Deuxième cas : si µ < 1, alors on a u−1
i (a) =

1

λ
a où

1

λ
> 1 et K est stable par l'automorphisme u−1

i

En faisant comme dans le cas précédent avec u−1
i , on arrive à une absurdité de façon analogue.

Ainsi a est un point �xe de tous les endomorphismes ui où i ∈ {1, . . . , r}

Q 16. On note pour u ∈ G, Fu = {a ∈ K
/
u(a) = a}.

Comme pour u ∈ G, u− IdE est continue (linéaire en dimension �nie), alors Fu = (u− IdE)
−1

({0}) est un fermé
de K (image réciproque de fermé par une application continue)
Comme K est un fermé de E (car compact de E) et Fu ⊂ K, alors Fu est un fermé de E.

On suppose par l'absurde que
⋂
u∈G

Fu = ∅.

D'après la question 8, il existe p ∈ N∗ et u1, . . . , up ∈ G tels que

p⋂
i=1

Fui
= ∅.

Ceci est contradictoire avec la question précédente ainsi
⋂
u∈G

Fu ̸= ∅.

Donc on peut choisir a ∈
⋂
u∈G

Fu. Ainsi il existe bien a ∈ K tel que pour tout u ∈ G, u(a) = a

IV.

Q 17. Soit A ∈ G. Montrons :

 (a) ρA : Mn(R) −→Mn(R)
(b) ρA linéaire
(c) ρA bijective

Pour (a) C'est évident

Pour (b) On véri�e par calcul dans l'algèbre Mn(R) que :

∀M,N ∈Mn(R),∀λ ∈ R, ρA(λM +N) = λρA(M) + ρA(N)

Pour (c) Soit B,C ∈ G.

Par calcul dans l'algèbre Mn(R), on a véri�e facilement que ρB ◦ ρC = ρCB car BTCT = (CB)T

On a également ρIn = IdMn(R) et l'existence A
−1 car G ⊂ GLn(R).

donc ρA ◦ ρA−1 = IdMn(R) et ρA−1 ◦ ρA = IdMn(R)

Ce qui prouve que ρA est bijective

On a montré que ρA ∈ GL(Mn(R))

Montrons maintenant que l'application notée Λ : A ∈ G 7−→ ρA ∈ GL(Mn(R)) est continue.

On se donne B = (ei)1⩽i⩽n2 une base de Mn(R).

L'application ψ qui à f = (f1, · · · , fn2) ∈Mn(R)(n
2) associe l'application ψ(f) ∈ (Mn(R)) dé�nie par :

∀i ∈
[[
1, n2

]]
, ψ(f)(ei) = fi

est un isomorphisme d'espace vectoriel donc linéaire entre espaces de mêmes dimensions �nies (n4).
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Ainsi l'application ψ est continue.

L'énoncé donne que à M ∈ G �xé, l'application : A ∈ G 7−→ ρA(M) ∈Mn(R) est continue.

Donc l'application noté φB : A ∈ G 7−→ (ρA(e1), · · · , ρA(en2)) ∈Mn(R)(n
2) est continue

Ainsi Λ = ψ ◦ φB est continue par composition.

Comme H = Λ(G), alors H est un compact en tant qu'image d'un compact par une application continue.

Pour établir que H est sous-groupe de GL(Mn(R)), il su�t d'établir que :

 (i) H ⊂ GL(Mn(R)) (déjà vu)
(ii) H ̸= ∅
(iii) Les stabilités de H

Pour (ii) On a In ∈ G car G sous-groupe.

Donc ρIn = IdMn(R) ∈ H ainsi H est non-vide

Pour (iii) Soit ρA, ρB ∈ H où A,B ∈ G.

On a vu en (c) que (ρA)
−1 ◦ ρB = ρBA−1

Comme G est un sous-groupe alors BA−1 ∈ G et donc (ρA)
−1 ◦ ρB ∈ H.

On a bien montré que H est un sous-groupe compact de GL(Mn(R))

Remarque : On aurait pu montrer que pour loi de composition interne ⊥ dé�nie sur G par : A⊥B = BAque (G,⊥) est
un groupe, que Λ est un morphisme de groupes de (G,⊥) dans (GL(Mn(R)), ◦) et que H = Im (Λ) et ainsi que H est un
sous-groupe de GL(Mn(R))

Q 18. On a G ⊆ GLn(R) donc en utilisant la réciproque de 2, on a ∆ ⊆ S++
n (R).

L'application notée Φ : A ∈ G 7−→ ρA(In) = ATA ∈Mn(R) est continue d'après l'énoncé

ainsi ∆ = Φ(G) est compact car G l'est.

d'où ∆ est un compact contenu dans S++
n (R)

Il su�t d'établir que :

 (i) K = Conv(∆) est compact (oui avec 4.)
(ii) H ⊆ S++

n (R)
(iii) K stable par les éléments H

Pour (ii) : D'après 3, S++
n (R) est un convexe de Mn(R) qui de plus contient ∆

Comme K est le plus petit convexe contenant ∆ alors K ⊂ S++
n (R).

Remarque : le plus petit convexe contenant une partie est bien dé�ni car Mn(R) est convexe et que l'intersection
d'une famille de convexes est convexe.

Pour (iii) : Soit M ∈ K et ρA ∈ H où A ∈ G. Montrons ρA(M) ∈ K.

D'après ce qui est admis en introduction, on peut écrire M =

n2+1∑
i=1

λiBi

où (B1, . . . , Bn2+1) ∈ ∆n2+1, (λ1, . . . , λn2+1) ∈
(
R+
)n2+1

et M =

n2+1∑
i=1

λi = 1

Par linéarité de ρA : ρA(M) =

n2+1∑
i=1

λiρA(Bi)

Pour 1 ⩽ i ⩽ n2 + 1, on peut écrire Bi = (Ci)
TCi où Ci ∈ G, ainsi ρA(Bi) = AT(Ci)

TCiA = (CiA)
TCiA

or CiA ∈ G car G est un groupe et donc ρA(Bi) ∈ ∆

d'où ρA(M) =

n2+1∑
i=1

λiρA(Bi) ∈ Conv(∆) = K.

On a montré que K est un sous-ensemble compact de S++
n (R) qui est stable par tous les éléments de H

Q 19. Pour pouvoir appliquer le théorème du point �xe de Markov-Kakutani au convexe compact K de l'espace euclidien
Mn(R) qui est stable par tous élément du sous groupe compact H de GL (Mn(R)), il su�t d'établir que K est non
vide. C'est bien la cas car comme In ∈ G, on a {ITn In} ⊂ ∆ ⊂ K.

Le théorème nous fournit alors a ∈ K, tel que ∀u ∈ H, u(a) = a
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ou encore : il existe M ∈ K tel que pour tout A ∈ G, ρA(M) =M

Comme K ⊂ S++
n (R), 2 nous fournit N ∈ GLn(R) tel que M = NTN .

Soit A ∈ G. On a alors ATNTNA = NTN car ρA(M) =M .

Alors on a
(
NAN−1

)T
NAN−1 =

(
N−1

)T
ATNTNAN−1 =

(
NT
)−1

NTNN−1 = In

On en déduit l'existence de N ∈ GLn(R) tel que pour tout A ∈ G, NAN−1 ∈ On(R)

Considérons l'application ψN : A ∈ GLn(R) 7−→ NAN−1 ∈ GLn(R)

On véri�e que ψN est un morphisme de groupes de (GLn(R), ·) vers lui-même.

On note G1 = ψN (G) qui est donc un sous-groupe de GLn(R) car G est un sous-groupe de GLn(R)

Comme ψN (G) ⊂ On(R) alors G1 est un sous groupe de On(R). On remarque de plus que ψN est bijectif de bijection
réciproque ψN−1 : A ∈ GLn(R) 7−→ N−1AN ∈ GLn(R) donc G = ψN−1(G1).

Finalement il existe un sous-groupe G1 de On(R) tel que G = N−1G1N = {N−1BN/ B ∈ G1}

Q 20. g ◦ σP ◦ g−1 est une symétrie car g ∈ L (Rn) et g2 = IdE car σP est une symétrie

On note A la matrice de σP dans la base canonique qui est orthonormée dans Rn muni de sa structure euclidienne
usuelle et donc A ∈ On(R) ⊂ K Ainsi g ◦ σP ◦ g−1 admet comme matrice dans cette base NAN−1 ∈ On(R)
donc c'est un endomorphisme orthogonal de Rn d'où g ◦ σP ◦ g−1 est une symétrie orthogonale. De plus ∀x ∈ E,
g ◦ σP ◦ g−1(x) = x⇔ σP

(
g−1(x)

)
= g−1(x)⇔ g−1(x) ∈ P ⇔ x ∈ g(P ). On en déduit que g ◦ σP ◦ g−1 = σg(P ) .

Soit x ⊥ y dans E. Si x ̸= 0. Alors y ∈ Q = {x}⊥, hyperplan de E et g ◦ σQ ◦ g−1 = σg(Q)

alors σg(Q)(g(x)) = g ◦ σQ(x) = −g(x) donc g(x) ∈ g(Q)⊥ or g(y) ∈ g(Q) donc g(x) ⊥ g(y) (vrai pour x = 0)

Ainsi g conserve l'orthogonalité et 5 nous fournit k > 0 tel que N = kΩ où Ω ∈ On(R) car N ∈ GLn(R)

donc Ω est tel que ΩKΩ−1 ⊆ On(R). 21 nous fournit G1 sous groupe de On(R) tel que K = Ω−1G1Ω ⊂ On(R)

on en déduit K = On(R)
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