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Probléme inspiré par le sujet Mines-Ponts 2 - MP - 2017

Probléme 1

Dans ce probléme, E est un R-espace vectoriel de dimension finie, muni d’une norme || ||.

Sia € E et r est un réel strictement positif, on note B(a,r) la boule ouverte de centre a et de rayon r :
Bla,r)={z € E / |z —a| <r}.

Les deux premiéres parties sont indépendantes. La troisiéme utilise les résultats des parties I et II. La partie IV utilise les
résultats de la partie III.

I. Stabilité des parties convexes par barycentration positive

On rappelle qu'une partie A de E est dite convexe quand elle vérifie

Y(a,b) € A2 Vte[0,1] ta+(1—thbec A

Q1.
a) Soit (a1,...,a,) € E™ et (t1,...,t,) € [0,1]" tel que zn:ti =1.
. — 1< .i:1 . -
Montrez que si s = ; t; #0et b= S ; t;a;, alors il existe A € [0, 1] tel que ;tlaz =X+ (1= Nay.

b) Soit A une partie convexe de E. Montrez la proposition suivante :

n n
pour tout n € N*, pour tout (ay,...,a,) € A" et pour tout (t1,...,t,) € [0,1]", si Zti =1, alors Ztiai e A.
i=1 i=1

n n

Remarque : tout vecteur qui peut s’écrire Z t;a; ou Z t; = 1 s’appelle le barycentre de la famille (a;,¢;)<i<n- On a donc
i=1 i=1

montré que toute partie convexe est stable par barycentration positive (ici les coefficients ¢; sont tous positifs).

II. Compacité
Dans cette partie, K est un compact de E.

Soit (A;);es une famille de parties de E. On dit que cette famille est un recouvrement de K quand K C U A;.
iel
L’objet de cette partie est de montrer la proposition suivante (dite propriété de Borel-Lebesgue) :

si (€)ier est une famille d’ouverts et un recouvrement de K, alors il existe une partie finie J de I telle que (€2;);cs est
aussi un recouvrement de K.

Q 2. Montrez lexistence de 6(K) = sup ||z —y| (diamétre de K).
(z,y)eK?

Q 3. Soit € > 0 et (u,) une suite de E telle que pour tout (n,p) € N2, si n # p, alors ||u, — u,|| > ¢. Montrez que (uy,
i

n’a aucune valeur d’adhérence.

n

Q 4. Montrez que pour tout r > 0, il existe n € N* et (21,...,z,) € K" tel que K C U B(z;,r). Indication : procéder
i=1
par ’absurde et construire une suite qui permette d’utiliser la question précédente.

Q 5. Soit (uy) une suite de F qui converge vers £ et r > 0. Montrez qu’il existe a > 0 et N € N tel que pour tout n > N,
B(un,a) C B(l,r).

Q 6. Soit (£2;);er une famille d’ouverts qui est un recouvrement de K. Montrez la proposition suivante :
Ja>0 VeeK 3Jiel B(z,a)CQ

(on pourra procéder par I’absurde et construire une suite de K qui ne posséde aucune valeur d’adhérence)



Q 7. Concluez : montrez la propriété de Borel-Lebesgue.
Q 8. Soit (F;)ier une famille de fermés de K telle que ﬂ F; = @. Montrez qu’il existe une partie finie J de I telle que

el
ﬂ F, =o.
ieJ

III. Théoréme du point fixe de Markov-Kakutani

Dans cette partie, la norme de E est la norme euclidienne associée & un produit scalaire ( | ), G est un sous-groupe compact
de GL(F) et K une partie non vide, compacte et convexe de E.

Pour z € E, on pose Ng(x) = sup |Ju(z)]|.
ueG
Q 9. Montrez que N est bien définie et qu’elle est une norme sur E. Montrez que pour z € F, 'application u — u(x)
est continue sur G.

Q 10. Montrez que N¢g vérifie en outre les deux propriétés suivantes :
— pour tout x € F et u € G, Ng(u(z)) = Ng(z);
— pour tout (x,y) € E? et x # 0, Ng(x +y) = Ng(z) + Ng(y) si et seulement si y = Az ott A € R ;

on rappelle 'inégalité de Cauchy-Schwarz : (z]y) < ||z|| ||ly|| avec égalité si et seulement si y = Az on A € R

Q 11. Dans cette question, on suppose que u est un élément de .Z(F) tel que u(K) C K.

n—1
Pour z € K et n € N*, on pose z,, = - Zoul(x)
i=
Montrez que la suite (z,) est & termes dans K, puis qu’elle a une valeur d’adhérence a € K. Montrez aussi que
6(K)

pour tout n € N*, |Ju(zy,) — 2,|| < ——. Déduisez-en que a est un point fixe de u (i.e. u(a) = a).
n

Dans les question suivantes, on suppose que K est stable par tous les éléments de G. Soit r € N*, uy,...,u, r éléments
1 T
de G et on pose u = ;Zlul
=

Q 12. Montrez que K est stable par u et déduisez-en 'existence d’un élément a de K tel que u(a) = a.

Q 13. Montrez que Ng(u(a)) = %ET:Ng(ui(a)).
i=1

Déduisez-en que pour tout j € {1,...,r}, Ng [ u;(a) + Z ui(a) | = Ng (u;(a)) + Z Ng¢ (u;(a)).
i i
Aj+ 1u

Q 14. Déduisez-en, pour tout j € {1,...,r}, 'existence d’un réel \; > 0 tel que u(a) = -

j(a).

Q 15. Déduisez-en que a est un point fixe de tous les endomorphismes w1, ..., .

Q 16. En utilisant la question 8, montrez qu'’il existe a € K tel que pour tout u € G, u(a) = a.

IV.

Si N =dim E et F est une partie de E, on note Conv(F') l'intersection de toutes les parties convexes qui contiennent F' :
c’est le plus petit convexe de FE qui contient F', appelé enveloppe convexe de F. On admet :

N+1 N+1
Conv(F) = {Z tia; / (a1,...,an41) € BNV (t, ... tngn) € [0, 1)V, Z t; = 1}
i=1 i=1

Dans la suite, n désigne un entier naturel non nul. On rappelle que O, (R) est I’ensemble des matrices orthogonales de
M, (R), i.e. les matrices A € .#,(R) telles que ATA = I, et que I'application (A, B) + tr(ATB) est un produit scalaire
sur 4, (R).

On pose S}t ={ATA / A€ .#,(R)}. On admet que S, est une partie convexe de .7, (R).



Soit G un sous groupe compact de GL,(R).

Si A € G, on deéfinit application ps de M, (R) dans lui méme par la formule ps(M) = ATMA. On vérifie facilement, et
on ladmet, que pour tout M € M, (R), application qui & A € G associe p4 (M) est continue.

Onnote H={ps /| A€ G}, A={ATA /| A€ G} et K = Conv(A).
Q 17. Montrer que ps € GL(M,(R)) et que H est un sous-groupe compact de GL(M,(R)).

Q 18. Montrer que A est un compact contenu dans ;7" (R) et que K est un sous-ensemble compact de S, (R) qui est
stable par tous les éléments de H.

Q 19. Montrer qu’il existe M € K tel que pour tout A € G, pa(M) = M. En déduire existence de N € GL,(R)
tel que pour tout A € G, NAN~! € O,(R). En déduire enfin qu’il existe un sous-groupe G de O, (R) tel que
G=N"'GiN={N"'BN |/ BeG}.

Soit K un sous-groupe compact de G L, (R) qui contient O, (R), et N € GL,(R) tel que NKN~! C O,,(R). On désigne
par g 'automorphisme de R"™ de matrice IV dans la base canonique de R", par P un hyperplan de R" et par op la symétrie
orthogonale par rapport a P.

Q 20. Montrer que go op o g ' est une symétrie, puis que c’est un endomorphisme orthogonal de R". En déduire que
goopog l= o4(p)- Montrer que g conserve l'orthogonalité et en déduire K.



Devoir surveillé 2 - sujet Mines-Ponts - Centrale - Corrigé

Probléme 1

Ce corrigé est inspiré par celui d’Edouard Lucas (MPI - lycée Montaigne), merci & lui.

I.

Q1.

a) Il suffit de poser A =1 —¢,.
b) Par recurrence sur n. On appelle £(n) le prédicat :

II.

Q 2.

n n
« pour tout (ag,...,a,) € A" et pour tout (t1,...,t,) € [0,1]", si Zti =1, alors Ztiai c€Av».
i=1 i=1
Pour n =1, #(1) est trivialement vraie. Pour n = 2, il s’agit simplement de la défintion de partie convexe.

n
Si P(n — 1) est vraie, alors soit (ay,...,a,) € A" et (t1,...,tn) € [0,1]" tel que Zti =1,

i=1
n—1 n—1
premier cas : si E t; # 0, alors on pose b = — E t;a; ; comme la somme des (n — 1) coefficients de cette somme
s
i=0 i=1

vaut 1 et qu’ils sont tous positifs, d’aprés ’hypothése de récurrence, on a b € A; or d’apreés la question précédente
n

on peut écrire Z t;a; = Ab+ (1= N)a, o A € [0,1], donc comme b et a,, sont dans A et que A est convexe, on

i=1
n
en déduit que E tia; € A;
i=1
n—1
deuxiéme cas : si E t; = 0, alors comme il s’agit d’'une somme de réels positifs, tous ces réels sont nuls donc il
i=0

n
reste E tia; = than, = ap € A.
i=1
Dans les deux cas, on a ce qu’on veut, donc &?(n) est vraie.
D’aprés le principe de récurrence, pour tout n € N*, &(n) est vraie.

K est un compact donc une partie bornée. Donc il existe R > 0 tel que K C B(0, R), donc pour tout (z,y) € K2,
lz —y|| < ||lz|| + |ly|| < 2R. La fonction (z,y) ~ ||z — y|| est donc majorée sur K2, donc §(K) existe (propriété de
la borne supérieure).

Par P’absurde, on suppose qu’il existe une suite extraite (zw(n)) convergente. Ainsi la suite (x¢(n+1) - zy,(n))
converge vers 0, ceci nous fournit N € N tel que pour tout p > N, on ait |[z,(p41) — T(p) || = €. Contradiction.

Ainsi ‘ cette suite n’admet aucune suite extraite convergente‘

Par I’absurde, on suppose que la propriété & démontrer est fausse.

P
Ceci nous fournit € > 0 tel que pour tout p € N* et x4,...,z, éléments de E on ait K ¢ U B(z;, ).

i=1
On va construire par récurrence une suite (zx)g>1 & valeurs dans K telle que pour tout n # p, on ait ||z, —x,|| > e.
On choisit un élément zy € K. Par hypothése, on a K ¢ B(x,¢€), ce qui nous fournit z; € K \ B(xg,¢).

Soit k € N. On suppose construits o, . .., 2 € K tel que pour tout (n,p) € [1, k:]]2 tel que n # p,on a ||z, —x,|| > €.
P P

On a alors K ¢ U B(z;,¢), donc il existe 11 € K tel que xgpy1 & U B(z;,¢), donc pour tout n € [1,k],
i=0 =0

[@kr1 — znll = e

Par récurrence, on a donc construit la suite voulue, qui vérifie pour tout (n,p) € [1,k+ 1]]2 tel que n # p,
oy — all > e.

La suite ainsi construite (zx)r>0 vérifie pour tout entiers naturels n # p, on a ||z, — x| > €. D’aprés la question
précédente, cette suite n’admet pas de valeur d’adhérence. Or il s’agit d’une suite & valeurs dans le compact K, ce
qui est absurde.

p
Ainsi | pour tout réel € > 0, il existe un entier p > 0 et z1,...,x, éléments de E tels que K C U B(x;,¢€)
i=1




Q7.

Q 8.

I11.
Q9.

On pose a = g > 0. La suite (u,) converge vers ¢, donc il existe N € N tel que pour tout n > N, ||u, — ¢|| < a.
Donc pour tout n = N et x € B(uy, @), ||z — || < || — un|| + [|un — €] < o+ a = r, donc B(uy, a) C B¢, r).

Par l’absurde, on suppose que pour tout réel o > 0, il existe x € K, tel que pour tout ¢ € I, on ait B(z,a) ¢ ;.
On spécialise a < 1/n.

Ainsi pour n € N*, ceci nous fournit x,, € K tel que pour tout 7 € I, on ait B(z,,1/n) ¢ Q;.

La suite (x,,) & valeurs dans le compact K admet une extractrice ¢ telle que (7,(,)) qui converge vers une valeur

d’adhérence ¢ € K. Comme K C U €24, ceci nous fournit j € I tel que £ € ;.
iel

Comme ; est un ouvert, ceci nous fournit » > 0 tel que B(¢,7) C Q;.
Comme (z,(,)) converge vers £, d’aprés la question précédente, il existe Ny € N et 8 > 0 tel que Vn > Ni,
B(xwm,ﬁ) C Qj. .
Or p(n) ——— + 00, donc il existe Ny € N tel que Vn > No, ﬁ < B.

n—+oo SO n
Donc pour tout n > max(Ny, N2), B(zymy, 1/¢(n)) C B(xym), 8) C B(¢,r), ce qui absurde par construction de la
suite ().

Ainsi ‘ il existe un réel « > 0 tel que pour tout z € K, il existe ¢ € I tel que B(z,a) C Q;

K étant compact, la question précédente donne l'existence d’un réel a > 0 tel que pour tout = € K, il existe i, € I
tel que x € B(z, o) C £,

Gy,

n n
D’apres la question 4, il existe n € N* et (z1,...,2,) € K" tel que K C U B(xg,a) done K C U Q
k=1 k=1

D’ou | I'existence d'une sous-famille finie (€2;,,...,€;,) de la famille (£€2;);es telle que K C Qi |

C-~

=~
I
-

0;.

On note pour i € I, O; = E'\ F; qui est un ouvert de F par complémentaire, et on a K C

C

©
™M
~

La question précédente nous fournit une sous famille finie (O;,,...,0; ) telle que K C U 0;,. On a donc par
k=1

P
passage au complémentaire ﬂ F,, CE\K.
k=1

P
Comme pour tout i € I, on a F; C K, on a donc ﬂ F, =0|

L’application u € .Z(E) +— u(x) € E est linéaire et .Z(E) est de dimension finie (dim E)?, donc elle est continue.
Ainsi cette application est bornée sur le compact G d’aprés le th. des bornes atteintes,

d’oi I'existence dans R* de Ng(z) = sug lu(z)]|-

Soit (w,y) € E*. Pour tout u € G, HU(ZJGJr Yl = llu@) + u@)] < [lu(@)]] + lu@)] < No(2) + Na(y)-

Comme c’est vrai pour tout u € G, on a bien Ng(z + y) < Ng(x) + Na(y)
La multiplication par un réel positif est croissante donc elle conserve ’ordre des inégalités et donc en particulier les
bornes supérieures,

donc pour tout A € R, Ng(Az) = sup |u(Az)| = sup [Mu(z)| = sup |A|.|u(z)| = |A| sup |u(z)| = |A|[Ng(z)
ueG ueG ueG ueG
Si Ng(x) =0, alors Yu € G, |lu(z)|| = 0 : en particulier pour v = Idg car G sous groupe de GL(E), donc z =0

On a montré que ‘ Ng est bien définie et que c’est une norme sur E ‘

Q 10.

Soitue GetxeE.

L’application v — v o u est une bijection du groupe G dans lui-méme de bijection réciproque v — v ou ™!

donc Ng(u(x)) = sup ||vou(x)|| = sup ||w(z)| = Ng(x).
veG welG

Ainsi ‘ pour tous u € G et © € B, Ng(u(z)) = Ng(x) ‘




Q 11.

Q 12.

Q 13.

Q 14.

Soit x,y € E tel que x est non nul.
< : On suppose qu’il existe A € RT tel que Az = y.

Pour tout w € G, on a ||u(z + y)|| = (1 + A) - |Ju(x)]] car 1 + A > 0. En faisant comme pour ’homogénéité, on
obtient : Ng(z +y) = (1 4+ A\)Ng(z) donc Ng(z +y) = Ng(z) + Ng(y) car A > 0 et Ng est une norme.

= : On suppose que Ng(z +y) = Ng(x) + Na(y).

Le théoréme des bornes atteintes avec I’application continue définie sur le compact G : u — [Ju(z)|| nous fournit
v € G tel que Ng(x +y) = ||v(z + y)|]

On note 2’ = v(z) et 3 = v(y) de sorte que Ng(x +y) = ||z’ + /|| et avec ce qui précéde, on a Ng(z) + Ng(y) =
Ng(z') + Ng(y') donce ||2" +¢'|| = Na(2') + Na(y').

Ainsi Ng(2') + Ne(y') < ||2]| + ||| en utilisant I'inégalité triangulaire pour || - ||

or Ne(z') > [|l2'|| et Ne(y') > ||y car Idg € G donc [|2” +y/[| = Na(2') + Na(y') = |2/ + ly/]|.
En élevant au carré on trouve aprés simplification : 2(z’ | ¥') = 2||2'|| x ||v/]| (¥)

donc (2',y") liée d’apres le cas d’égalité de I'inégalité de Cauchy-Schwarz

comme ' # 0 car v € GL(E), ceci nous fournit A € R, tel que A\’ =3/ (*¥)

En appliquant v~ a (**), on a : Az = .

Conclusion :

‘pour tous x,y € E avec x non nul, Ng(z +y) = Ng(z) + Ng(y) si et seulement si Az =y ot A € RT ‘

Soit ¢ € K. Comme K est stable par u, on montre par récurrence sur i que uz(a:) € K pour tout ¢ € N. Ainsi
d’aprés la partie I, comme K est convexe, on a x, € K.
Ainsi comme K est compact :

‘la suite (z)nen+ est & valeurs dans K et admet une suite extraite convergente vers un élément a de K ‘

oK)

car z et u"(x) € K

1
Soit n € N*. On a |Ju(z,) — x,|| = EHu"(m) —z|| donc | ||Ju(zy,) — 2, <

Notons ¢ une extractrice telle que (w¢(n)) converge vers a.

6(K) (K)

Alors pour tout n € N*, on a : [|[u(zy(n) — Tom) || < et de plus — 0.
[Ju( o( ) o( )l o(n) o(n)  noteo

Comme I’application y — u(y) — y est continue (linéaire en dimension finie), alors (u(%y(n)) — Tp(n)) converge vers

neN*

u(a) —a = 0, ainsi ‘ I’élément a de K est un point fixe de u‘

1 T
Soit # € K. Alors pour tout ¢ € [1,7], u;(xz) € K. Or u(x) = - E u;(z) et K est convexe donc d’apreés la
T
=1

question 1b de la partie I, u(x) € K. Comme u € Z(F) le résultat de la question précédente permet d’en déduire :

Pexistence de a € K tel que u(a) =a ‘

Comme u(a) = a, on a Ng (i Zui(a) = N¢ (u(a)) = Ng(a)

et d’apreés le premier point de la question 10, on a N¢(u;(a)) = Ng(a) pour tout i € [1,r], d’on

%ZNg(ui(a)) = ;Ng(a). On a bien | Ng (i Zui(a)> = %ZNG(W(@)) .
i=1 =1 i=1

T T

Ainsi par homogénéité : Ng (Z ui(a)> = ZNG(W(G)) carr >0
i=1 i=1

Soit j € {1,...,r}. Avec ce qui précéde et en utilisant l'inégalité triangulaire pour N¢, on a :

Ne | uj(a) +> ui(a) | < Ne(uj(a)) + No | Y uila) | < Ne (ui(a)) = No | uja) + Y ui(a)
=1 =1 i=1 =1
i#] i#j i#]

donc on a bien | Ng | uj(a)+ Z ui(a) | = Ng(uj(a)) + Ng Z u;(a)
=1 i=1
1#] 1#]

Soit j € {1,...,7}. On suppose dans un premier temps que u;(a) est un vecteur non nul de E.
En appliquant le deuxieéme point de 10 & I’égalité précédente, on obtient 'existence de A; > 0 tel que



T
Zui(a) = Ajuj(a), donc ru(z) = Aju;j(a) + u;(a) ce qui permet de conclure dans ce cas car r > 0.
i=1
i)
Dans un deuxiéme temps, si u;(a) est le vecteur nul de E alors a = 0 car u; € GL(E), et en prenant A\; = 1 on a

i+ 1
u(a) =0 et At

uj(a) = 0 car u et u; linéaires,

pour tout j € {1,...,r}, on a l’existence d’un nombre réel \; > 0 tel que u(a) =

u;(a) | dans tous les cas.

Q 15. On suppose par l'absurde qu’il existe 7 € {1,...,r} tel que a ne soit pas un point fixe de ’endomorphisme w;.

A+ 1
i >0carr>0et A\; > 0. On adonc u#1etaz#0.

u;(a) donc u;(a) = pa ou p =

r
Ona:a= =

na:a=ua) Y
Premier cas : si g > 1, alors pour tout k € N, uf(a) = p¥a

Comme K est stable par u; alors la suite (u¥(a))x est a valeurs dans K (récurrence immédiate)

Comme K est bornée car compact, alors cette suite est bornée. Or ||uf(a)|| = p* - |a| o oo
c—+00

Absurde. . )
Deuxiéme cas : si pu < 1, alors on a u[l(a) = —a ou — > 1 et K est stable par 'automorphisme u;l

A A

1

En faisant comme dans le cas précédent avec u; -, on arrive & une absurdité de fagon analogue.

Ainsi ‘ a est un point fixe de tous les endomorphismes u; ou i € {1,...,r} ‘

Q 16. On note pour u € G, F, = {a € K / u(a) = a}.
Comme pour u € G, u — Idg est continue (linéaire en dimension finie), alors F,, = (u — Idg)~" ({0}) est un fermé
de K (image réciproque de fermé par une application continue)
Comme K est un fermé de E (car compact de F) et F,, C K, alors F, est un fermé de F.
On suppose par ’absurde que ﬂ F,=0.
ueG

P
D’aprés la question 8, il existe p € N* et uq,...,u, € G tels que n F,, =0.
i=1
Ceci est contradictoire avec la question précédente ainsi ﬂ F, #0.
ueG
Donc on peut choisir a € ﬂ F,. Ainsi ‘ il existe bien a € K tel que pour tout u € G, u(a) = a‘
ueG

IV.

(@) pa: My(R) — M (R)
Q 17. Soit A € G. Montrons : ¢ (b) pa linéaire
(¢) pa bijective

Pour (a) C’est évident

Pour (b) On vérifie par calcul dans l'algébre .#,(R) que :
YM,N € M, (R),YA € R, pa(AM + N) = A\pa(M) + pa(N)

Pour (c¢) Soit B,C € G.
Par calcul dans l’algébre .4, (R), on a vérifie facilement que pp o pc = pcp car B'CT = (CB)T
On a également p;, =1d 4, () et I'existence A~ car G C GL,(R).
donc pgopa— =1d 4,®) €t pa-10pa =1d 4, ®)
Ce qui prouve que py4 est bijective

On a montré que ‘ pa € GL(M,(R)) ‘

Montrons maintenant que ’application notée A : A € G — pa € GL(M,(R)) est continue.

On se donne % = (e;)1<i<n2 une base de ., (R).
L’application ¥ qui & f = (f1, -, fa2) € ///n(R)("z) associe 'application ¢(f) € (#,(R)) définie par :
Vi € [[1,’112]] s ’(/J(f)(ez) = fz

est un isomorphisme d’espace vectoriel donc linéaire entre espaces de mémes dimensions finies (n4).



Ainsi ’application 1 est continue.

L’énoncé donne que & M € G fixé, application : A € G —— pa(M) € M, (R) est continue.
Donc lapplication noté ¢z : A € G — (pa(e1), -, palen2)) € //ZR(R)(”{Z) est continue
Ainsi A = ¢ o pg est continue par composition.

Comme H = A(G), alors H est un compact en tant qu’image d’un compact par une application continue.
(i) H C GL(M,(R)) (déja vu)
Pour établir que H est sous-groupe de GL(M,,(R)), il suffit d’établir que : (5) H#D
(7i1) Les stabilités de H
Pour (i7) On a I,, € G car G sous-groupe.

Donc py, =1Id 4, (r) € H ainsi H est non-vide
Pour (iii) Soit pa,pp € H ot A,B € G.

On a vu en (¢) que (pa)~ ' 0 pp = pra—

Comme G est un sous-groupe alors BA™' € G et donc (pa) ' o pp € H.

On a bien montré que ‘ H est un sous-groupe compact de GL(M,,(R)) ‘

Remarque :  On aurait pu montrer que pour loi de composition interne L définie sur G par : ALB = BAque (G, 1) est
un groupe, que A est un morphisme de groupes de (G, L) dans (GL(M,(R)),0) et que H =Im (A) et ainsi que H est un
sous-groupe de GL(M,,(R))

Q 18. On a G C GL,(R) donc en utilisant la réciproque de 2, on a A C S;7T(R).
L’application notée ® : A € G+ pa(I,) = ATA € #,(R) est continue d’aprés I’énonceé
ainsi A = ®(G) est compact car G lest.

d’ott ‘ A est un compact contenu dans S, " (R) ‘

(i) K = Conv(A) est compact (oui avec 4.)
11 suffit d’établir que : (i) H C ST (R)
(7i1) K stable par les éléments H

Pour (i) : D’aprés 3, S;77(R) est un convexe de .#,(R) qui de plus contient A

Comme K est le plus petit convexe contenant A alors K C S/t (R).

Remarque : le plus petit convexe contenant une partie est bien défini car #,(R) est convexe et que l'intersection
d’une famille de convezes est conveze.

Pour (iii) : Soit M € K et py € H ou A € G. Montrons psa(M) € K.

n2+1
D’apreés ce qui est admis en introduction, on peut écrire M = Z N B;
i=1
) 2, n2+1
o (By,...,Byag1) € AV (A, Aes) € RT) et M= A =1
i=1

n2+1
Par linéarité de pa : pa(M) = Z Xipa(B;)
i=1

Pour 1 < i < n?+ 1, on peut écrire B; = (C;)TC; ou C; € G, ainsi pa(B;) = AT(C;)TC; A = (C;A)TC; A

or ;A € G car G est un groupe et donc p4(B;) € A

n?41
d’ot pa(M) = Z Aipa(B;) € Conv(A) = K.
i=1

On a montré que ‘ K est un sous-ensemble compact de S;71(R) qui est stable par tous les éléments de H

Q 19. Pour pouvoir appliquer le théoréme du point fixe de Markov-Kakutani au convexe compact K de I’espace euclidien
My (R) qui est stable par tous élément du sous groupe compact H de GL (#,,(R)), il suffit d’établir que K est non
vide. C’est bien la cas car comme I,, € G,ona {I'I,} C A C K.

Le théoréme nous fournit alors a € K, tel que Vu € H, u(a) =a



Q 20.

ou encore : ‘il existe M € K tel que pour tout A € G, pa(M) = M‘

Comme K C S+ (R), 2 nous fournit N € GL, (R) tel que M = NTN.
Soit A€ G. On a alors ATNTNA = NTN car pa(M) = M.

Alors on a (NAN"Y)' NAN" = (N")TATNTNAN "' = (NT) ' NTNN"' =1,

On en déduit ‘l’existence de N € GL,(R) tel que pour tout A € G, NAN~! € O, (R)

Considérons I’application ¢y : A € GL,(R) — NAN~!' € GL,(R)
On vérifie que ¢ est un morphisme de groupes de (GL,(R),-) vers lui-méme.
On note G1 = ¢¥n(G) qui est donc un sous-groupe de GL,(R) car G est un sous-groupe de GL,(R)

Comme 1 (G) C O,(R) alors G; est un sous groupe de O, (R). On remarque de plus que ¢y est bijectif de bijection
réciproque ¥y-1 : A € GL,(R) — N™'AN € GL,(R) donc G = ¢y-1(G).

Finalement ‘il existe un sous-groupe G de O, (R) tel que G = N™'G1N = {N"'BN/ B € G} ‘

goopog ! est une symétrie car g € Z(R") et g> = Idg car op est une symétrie

On note A la matrice de op dans la base canonique qui est orthonormée dans R™ muni de sa structure euclidienne
usuelle et donc A € O,(R) C K Ainsi goop o g ' admet comme matrice dans cette base NAN~' € O,(R)
donc c’est un endomorphisme orthogonal de R™ d’oti go op o g~ ! est une symétrie orthogonale. De plus Vz € E,

goopog H(z)=zop (97 (z)) =g (z) & g ' (z) € P&z € g(P). On en déduit que |[goopog ™' =ayp |

Soit z Ly dans E. Si z # 0. Alors y € Q = {z}*, hyperplan de E et g o ogog = T9(Q)

alors 04(g)(9(7)) = g 0 og(x) = —g(x) donc g(z) € g(Q)" or g(y) € g(Q) donc g(z) L g(y) (vrai pour z = 0)
Ainsi g conserve 'orthogonalité et 5 nous fournit k& > 0 tel que N = kQ ou 2 € O,(R) car N € GL,(R)

donc  est tel que QKQ™' C O, (R). 21 nous fournit G; sous groupe de O, (R) tel que K = Q7'G1Q C O, (R)

on en déduit | K = O, (R)



