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L'usage de la calculatrice est interdit.

Exercice

Soit f : R → R continue telle que lim
+∞

f = +∞ et lim
−∞

f = −∞. Soit a ∈ R.

On pose A = f−1({a}) = {x ∈ R
/
f(x) = a}.

Q 1. Montrez que f est surjective.

Q 2. Montrez que A possède une borne inférieure et une borne supérieure. On note s = supA.

Q 3. Montrez que s = maxA.

**********

Problème 1 - Intégrale de Dirichlet

I. Une intégrale généralisée

Q 1. Montrez que l'intégrale

∫ 1

0

sin t

t
dt converge.

Q 2. Montrez que l'intégrale

∫ +∞

1

cos t

t2
dt converge.

Q 3. En e�ectuant une intégration par parties, montrez que l'intégrale

∫ +∞

1

sin t

t
dt converge.

On a donc démontré dans cette partie la convergence de l'intégrale de Dirichlet I =

∫ +∞

0

sin t

t
dt. La suite du problème

est consacrée au calcul de cette intégrale.

II. Le lemme de Lebesgue C1

Soit a, b deux réels tels que a < b et f une fonction de classe C1 sur [a, b].

Pour x ∈ R, on pose F (x) =

∫ b

a

f(t) sin(xt) dt.

Q 4. Montrez que pour tout x > 0, F (x) = f(a)
cos(xa)

x
− f(b)

cos(xb)

x
+

1

x

∫ b

a

f ′(t) cos(xt) dt.

Q 5. Déterminez une constante K ⩾ 0 telle que pour tout x > 0, |F (x)| ⩽ K

x
, puis déduisez-en la limite de F (x) quand

x → +∞.

III. Une suite d'intégrales

Pour n ∈ N, on pose un =

∫ π/2

0

sin((2n+ 1)t)

sin(t)
dt.

Q 6. Justi�ez l'existence de l'intégrale un.

Q 7. Soit p, q deux réels. Donnez une expression de sin p − sin q en fonction de sin

(
p− q

2

)
: vous pouvez donner une

réponse sans rédiger de démonstration.

Q 8. En calculant un+1 −un, montrez que la suite (un) est constante, puis donnez la valeur de toutes les intégrales un.

IV. Étude d'une fonction

On pose f(t) =
1

t
− 1

sin t
sur ]0, π/2].
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Q 9. Justi�ez que f est de classe C1 sur ]0, π/2].

Q 10. Montrez qu'on peut prolonger f par continuité en 0 en précisant la valeur de f(0).

Q 11. Montrez que f ainsi prolongée est de classe C1 sur [0, π/2] en véri�ant que f ′(0) =
−1

6
.

V. Calcul de I

Pour n ∈ N, on pose vn =

∫ π/2

0

sin((2n+ 1)t)

t
dt.

Q 12. Justi�ez l'existence de l'intégrale vn.

Q 13. En utilisant les parties précédentes, montrez que vn − un a pour limite 0 quand n → +∞.

Q 14. Concluez ce problème en donnant la valeur de l'intégrale I, en justi�ant bien sûr.

VI. Deux autres intégrales

Q 15. Montrez que l'intégrale

∫ +∞

0

1− cos t

t2
dt converge et que sa valeur est également

π

2
.

Q 16. Montrez que l'intégrale

∫ +∞

0

sin2 t

t2
dt converge et que sa valeur est aussi

π

2
.

**********

Problème 2 - Normes p

Dans tout le problème, p désigne un réel strictement supérieur à 1 et q l'unique réel tel que
1

p
+

1

q
= 1.

On pose alors
� C l'ensemble des fonctions continues sur [0,+∞[ à valeurs réelles
� E1 =

{
f ∈ C

/
f intégrable sur [0,+∞[

}
, ensemble des fonctions continues et intégrables sur [0,+∞[

� Ep =
{
f ∈ C

/
|f |p ∈ E1

}
Q 1. Montrez que E1 est un R-espace vectoriel et que la notation ∥f∥1 =

∫ +∞

0

|f | désigne une norme sur E1.

Q 2.

a) Montrez que pour tout (a, b) ∈ R2, |a+ b|p ⩽ 2p(|a|p + |b|p).
b) Montrez que Ep est aussi un R-espace vectoriel.

Pour f ∈ Ep, on pose ∥f∥p =

(∫ +∞

0

|f |p
)1/p

.

Q 3. Justi�ez que la notation ∥ . ∥p véri�e deux des trois axiomes d'une norme.

Q 4. En utilisant une propriété de concavité, montrez que pour tout (x, y) ∈ R2
+, xy ⩽

1

p
xp +

1

q
yq.

Q 5. Soit f, g deux éléments non nuls de Ep et Eq respectivement. Montrez que fg ∈ E1 et que ∥fg∥1 ⩽ ∥f∥p.∥g∥q.

Indication : utiliser l'inégalité précédente avec x =
|f |
∥f∥p

et y =
|g|
∥g∥q

.

Q 6. Soit f, g deux élements non nuls de Ep. Justi�ez que |f + g|p−1 ∈ Eq, puis montrez que ∥f + g∥p ⩽ ∥f∥p + ∥g∥p.
Concluez cette série de questions : que venez-vous de montrer à propos de la notation ∥ . ∥p ?
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Devoir surveillé 1 - Corrigé

Exercice

Q 1. f est continue sur R donc d'après le th. des valeurs intermédiaires, f(A) est un intervalle. Or lim
+∞

f = +∞ et

lim
−∞

f = −∞, donc f(A) = ]−∞,+∞[= R.

Donc f est surjective.

Q 2. f étant surjective, la partie A est donc non vide.

De plus, comme lim
+∞

f = +∞, il existe b ∈ R tel que pour tout x ⩾ b, f(x) ⩾ a+ 1.

Donc A est majorée par b : en e�et, s'il existe x ∈ A tel que x ⩾ b, alors f(x) = a ⩾ a+1 ce qui est contradictoire,
donc ceci prouve par l'absurde que pour tout x ∈ A, x < b.

De même, on montre que A est minorée, car lim
−∞

f = −∞.

Conclusion : A est une partie de R, non vide et majorée, donc elle possède une borne supérieure. De même, elle
possède une borne inférieure.

Q 3. Pour montrer que s = maxA, il su�t de montrer que s ∈ A, puisque s est un majorant de A par dé�nition.

Comme s = supA, il existe une suite (xn) ∈ AN qui converge vers s.

Comme f est continue sur R, la suite (f(xn)) converge vers f(s). Or comme pour tout n ∈ N, xn ∈ A, on a
f(xn) = a : la suite (f(xn)) est donc constante égale à a, donc converge aussi vers a.

Par unicité de la limite, f(s) = a, i.e. s ∈ A.

Donc A contient sa borne supérieure, celle-ci est donc son maximum.

Problème 1

I.

Q 1. La fonction t 7→ sin t

t
est continue sur ]0, 1], positive et

sin t

t
−−−→
t→0

1, donc on a une fausse singularité en 0 :

l'intégrale

∫ 1

0

sin t

t
dt converge.

Q 2. La fonction t 7→ cos t

t2
est continue sur [1,+∞[ et pour tout t ⩾ 1,

∣∣∣∣cos tt2

∣∣∣∣ ⩽ 1

t2
. Or l'intégrale

∫ +∞

1

1

t2
dt converge,

donc l'intégrale

∫ +∞

1

cos t

t2
dt est absolument convergente, donc convergente.

Q 3. Soit x ⩾ 1. Par intégration par parties, on a∫ x

1

sin t

t
dt =

[
− cos t

t

]x
t=1

−
∫ x

1

cos t

t2
dt

or d'après la question précédente, l'intégrale

∫ x

1

cos t

t2
dt a une limite �nie quand x tend vers +∞

et

[
− cos t

t

]x
t=1

= cos 1− cosx

x
−−−−−→
x→+∞

cos 1, car
∣∣∣cosx

x

∣∣∣ ⩽ 1

x
, donc par encadrement, lim

x→+∞

cosx

x
= 0.

donc par opérations sur les limites, l'intégrale

∫ x

1

sin t

t
dt a une limite �nie quand x tend vers +∞, i.e. l'intégrale∫ +∞

1

sin t

t
dt converge.

II.
Q 4. Intégration par parties : je ne détaille pas.

Q 5. Par inégalité triangulaire, pour tout x > 0, |F (x)| ⩽ |f(a)|
x

+
|f(b)|
x

+
1

x

∫ b

a

|f ′(t)|.

La constante K = |f(a)|+ |f(b)|+
∫ b

a

|f ′(t)| convient. Par encadrement, on en déduit que lim
x→+∞

F (x) = 0.
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III.

Q 6. La fonction t 7→ sin((2n+ 1)t)

sin(t)
est continue sur ]0, π/2], positive et

sin((2n+ 1)t)

sin(t)
−−−→
t→0

(2n + 1), donc on a une

fausse singularité en 0 : l'intégrale un converge.

Q 7. sin p− sin q = 2 sin

(
p− q

2

)
cos

(
p+ q

2

)
.

Q 8. Pour tout n ∈ N, un+1 − un =

∫ π/2

0

sin((2n+ 3)t)− sin((2n+ 1)t)

sin(t)
dt = 2

∫ π/2

0

sin(t) cos((2n+ 2)t)

sin(t)
dt

= 2

∫ π/2

0

cos((2n+ 2)t) dt =

[
sin((2n+ 2)t)

n+ 2

]π/2
t=0

=
1

n+ 2
(sin((n+ 1)π)− sin 0) = 0.

Ceci prouve donc que la suite (un) est constante, sa valeur est donc celle de u0, qui vaut
π

2
.

IV.
Q 9. La fonction sin est de classe C1 sur ]0, π/2] et ne s'y annule pas donc son inverse est aussi de classe C1 donc par

opérations sur les fonctions de classe C1, f l'est aussi.

Q 10. Pour t ∈ ]0, π/2], f(t) =
sin t− t

t sin t
∼

t→0

sin t− t

t2
. Or on connaît un d.l. de sin en 0 : sin t = t − t3

6
+ o(t3) donc

sin t− t ∼
t→0

−t3

6
, donc f(t) ∼

t→0

−t

6
−−−→
t→0

0.

On peut donc prolonger f par continuité en 0 en posant f(0) = 0.

Q 11. J'utilise le th. de limite de la dérivée dont je rappelle l'énoncé :

si f est continue sur [0, a], de classe C1 sur ]0, a] et si f ′ a une limite �nie ℓ en a, alors f est de classe C1 sur [0, a]
et f ′(0) = ℓ.

Ici, f prolongée par continuité satisfait les deux premières hypothèses, il reste à calculer lim
t→0

f ′(t).

Or f ′(t) =
−1

t2
+

cos t

sin2 t
=

t2 cos t− sin2 t

t2 sin2 t
∼ t2 cos t− sin2 t

t4
: on e�ectue donc un d.l. du numérateur à l'ordre 4.

t2 cos t− sin2 t = t2
(
1− t2

2
+

t4

24
+ o(t4)

)
−

(
t− t3

6
+ o(t4)

)2

=

(
t2 − t4

2

)
−
(
t2 − 2

t4

6

)
+ o(t4)

=
−t4

6
+ o(t4)∼ −t4

6

donc f ′(t) ∼
t→0

−1

6
−−−→
t→0

−1

6
.

D'après le th. rappelé précédemment, f est de classe C1 sur [0, π/2].

V.

Q 12. Toujours pareil :
sin((2n+ 1)t)

t
−−−→
t→0

(2n+ 1), donc on a une fausse singularité en 0 : l'intégrale vn converge.

Q 13. vn−un =

∫ π/2

0

f(t) sin((2n+1)t) dt, or f est de classe C1 sur [0, π/2] donc d'après le lemme de Lebesgue, vn−un

tend vers 0 quand n tend vers +∞.

Q 14. On a montré précédemment que un =
π

2
, donc gra�ce à la question précédente, on en déduit que vn −−−−−→

n→+∞

π

2
.

Par changement de variable y = (2n+1)t, on a vn =

∫ (2n+1)π/2

0

sin y

y
dy et on sait que l'intégrale I =

∫ +∞

0

sin t

t
dt

converge, donc lim
n→+∞

vn = I (caractérisation séquentielle de la limite).
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Conclusion : I =
π

2
.

VI.

Q 15. La fonction t 7→ 1− cos t

t2
est continue sur ]0,+∞[, a pour limite

1

2
en 0 (d.l. de cos. . .) et

∣∣∣∣1− cos t

t2

∣∣∣∣ ⩽ 2

t2
, donc

par les mêmes arguments que ceux développés en partie 1, l'intégrale

∫ +∞

0

1− cos t

t2
dt converge.

Une intégration par parties donne∫ +∞

0

1− cos t

t2
dt =

[
−1− cos t

t

]+∞

t=0

+

∫ +∞

0

sin t

t
dt

Cette intégration par parties est licite puisque les deux intégrales convergent.

Or lim
t→0

1− cos t

t
= 0 et lim

t→+∞

1− cos t

t
= 0, donc

∫ +∞

0

1− cos t

t2
dt =

∫ +∞

0

sin t

t
dt =

π

2
.

Q 16. La fonction t 7→ sin2 t

t2
est continue sur ]0,+∞[, a pour limite 1 en 0 et

∣∣∣∣ sin2 tt2

∣∣∣∣ ⩽ 1

t2
, donc par les mêmes arguments

que ceux développés en partie 1, l'intégrale

∫ +∞

0

sin2 t

t2
dt converge.

On e�ectue le changement de variables t = 2u dans l'intégrale

∫ +∞

0

1− cos t

t2
dt (changement de variable C1 et

bijectif) :

∫ +∞

0

1− cos t

t2
dt =

∫ +∞

0

1− cos(2u)

2u2
du,

or cos(2u) = 1− 2 sin2 u donc

∫ +∞

0

1− cos t

t2
dt =

∫ +∞

0

sin2 u

u2
du =

π

2
.

Problème 2

Q 1. C'est presque une question de cours.

C est un R-espace vectoriel connu et E1 est une partie de C, non vide (E1 contient la fonction nulle).

Soit (f, g) ∈ E2
1 et λ ∈ R.

f est intégrable sur [0,+∞[ donc

∫ +∞

0

|f | converge, donc par linéarité de l'intégrale,

∫ +∞

0

|λ|.|f | converge aussi,

autrement dit

∫ +∞

0

|λf | converge, donc λf est intégrable sur [0,+∞[, donc λf ∈ E1.

De même, comme 0 ⩽ |f+g| ⩽ |f |+|g| et les intégrales
∫ +∞

0

|f | et
∫ +∞

0

|g| convergent, alors par th. de comparaison

d'intégrales de fonctions positives (TCIFP), l'intégrale

∫ +∞

0

|f +g| converge, donc f +g est intégrable sur [0,+∞[,

i.e. f + g ∈ E1.

Tout ceci prouve que E1 est un sous-espace vectoriel de C, donc lui-même un R-espace vectoriel.

De plus, la linéarité de l'intégrale donne directement ∥λf∥1 =

∫ +∞

0

|λf | =
∫ +∞

0

|λ|.|f | = |λ|
∫ +∞

0

|f | = |λ|∥f∥1.

De même, comme 0 ⩽ |f + g| ⩽ |f | + |g|, la croissance de l'intégrale donne

∫ +∞

0

|f + g| ⩽
∫ +∞

0

(|f | + |g|) =∫ +∞

0

|f |+
∫ +∞

0

|g|, i.e. ∥f + g∥1 ⩽ ∥f∥1 + ∥g∥1.

En�n, si ∥f∥1 = 0, alors comme |f | est une fonction continue, positive, d'intégrale nulle, on en déduit par stricte
positivité de l'intégrale que |f | = 0, donc que f = 0 (la réciproque étant vraie bien sûr).

Au total, ∥ . ∥1 est une norme sur E1.

Q 2.
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a) Par inégalité triangulaire, |a+ b| ⩽ |a|+ |b|. Je note M = max(|a|, |b|), alors |a|+ |b| ⩽ 2M , donc |a+ b| ⩽ 2M .

La fonction puissance p-ème est croissante sur R+ donc |a+ b|p ⩽ (2M)p = 2pMp.

Et on a aussi Mp = max(|a|p, |b|p) ⩽ |a|p + |b|p, donc au total, |a+ b|p ⩽ 2p(|a|p + |b|p).
b) Il s'agit de la même démonstration que celle de la question Q 1, en remplaçant l'inégalité triangulaire 0 ⩽ |f +g| ⩽

|f |+ |g|, qui avait permis de montrer la stabilité par +, par l'inégalité ci-dessus.

Q 3. Ici encore, c'est la même démonstration qu'en question Q 1 en ce qui concerne les axiomes de séparation et
d'homogénéité. L'inégalité triangulaire, elle, est traitée dans la suite.

Q 4. La fonction ln est concave sur R∗
+ donc comme

1

p
+

1

q
= 1, on a

pour tout x, y > 0,
1

p
ln(xp) +

1

q
ln(yq) ⩽ ln

(
1

p
xp +

1

q
yq
)
.

En appliquant l'exponentielle, qui est croissante, on obtient l'inégalité voulue mais seulement quand x et y sont
non nuls. Il est facile de voir qu'elle est valable si l'un des deux est nul.

Q 5. On utilise l'indication donnée : on pose x =
|f |
∥f∥p

et y =
|g|
∥g∥q

, ce qui n'est possible que si les deux fonctions sont

non nulles. Dans le cas contraire, la propriété demandée est évidente.

On a donc
|f |
∥f∥p

× |g|
∥g∥q

⩽
1

p

|f |p

∥f∥pp
+

1

q

|g|q

∥g∥qq
. Comme |f |p et |g|q sont intégrables sur [0,+∞[, par TCIFP, la fonction

|f |.|g| = |fg| l'est aussi.

De plus, en intégrant sur [0,+∞[ :

1

∥f∥p.∥g∥q

∫ +∞

0

|fg| ⩽ 1

p∥f∥pp

∫ +∞

0

|f |p + 1

q∥g∥qq

∫ +∞

0

|g|q

=
1

p∥f∥pp
∥f∥pp +

1

q∥g∥qq
∥g∥qq

=
1

p
+

1

q
= 1

donc

∫ +∞

0

|fg| ⩽ ∥f∥p.∥g∥q, i.e. ∥fg∥1 ⩽ ∥f∥p.∥g∥q.

Q 6. q =
p

p− 1
donc (|f + g|p−1)q = |f + g|p. Or f, g ∈ Ep et Ep est un espace vectoriel, donc f + g ∈ Ep, i.e. |f + g|p

est intégrable sur [0,+∞[, donc |f + g|p−1 ∈ Eq.

Or |f + g|p = |f + g| × |f + g|p−1 ⩽ |f | × |f + g|p−1 + |g| × |f + g|p−1.

Comme f, g ∈ Ep et |f + g|p−1 ∈ Eq, on peut utiliser le résultat de la question Q 5 :∫ +∞

0

|f | × |f + g|p−1 + |g| × |f + g|p−1 ⩽ ∥f∥p.∥|f + g|p−1∥q + ∥g∥p.∥|f + g|p−1∥q

donc

∫ +∞

0

|f + g|p = ∥f + g∥pp ⩽ (∥f∥p + ∥g∥p) .
(∫ +∞

0

|f + g|p
)1/q

donc

(∫ +∞

0

|f + g|p
)1−1/q

⩽ ∥f∥p + ∥g∥p, i.e. ∥f + g∥p ⩽ ∥f∥p + ∥g∥p.

Ceci prouve donc l'inégalité triangulaire pour la notation ∥ . ∥p. Au total, il a donc été montré que ∥ . ∥p est une
norme.
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