Mpi Devoir surveillé 1

L’usage de la calculatrice est interdit.

Exercice

Soit f : R — R continue telle que 1+irnf = o0 et lim f = —o0. Soit a € R.

Onpose A= f'({a}) ={z €R / f(z) = a}.
Q 1. Montrez que f est surjective.
Q 2. Montrez que A posséde une borne inférieure et une borne supérieure. On note s = sup A.

Q 3. Montrez que s = max A.
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Probléme 1 - Intégrale de Dirichlet

I. Une intégrale généralisée
. Lsint
Q 1. Montrez que l'intégrale / - dt converge.
0

T cost
2. Montrez que l'intégrale —— dt converge.
g 2 g
1

T sint
Q 3. En effectuant une intégration par parties, montrez que l'intégrale / — dt converge.
1

+o0o o
sint
On a donc démontré dans cette partie la convergence de l'intégrale de Dirichlet I = / —~ dt. La suite du probléme
0

est consacrée au calcul de cette intégrale.

II. Le lemme de Lebesgue C!

Soit a,b deux réels tels que a < b et f une fonction de classe C* sur [a, b].
b
Pour z € R, on pose F(z) = / f(t) sin(zt) dt.

cos(za) cos(xb)

Q 4. Montrez que pour tout z > 0, F(z) = f(a)

gt

b
+% /a £/ (t) cos(xt) dt.
K

Q 5. Déterminez une constante K > 0 telle que pour tout z > 0, |F(x)| < —, puis déduisez-en la limite de F(z) quand
T
xr — +00.

ITI. Une suite d’intégrales

™2 sin((2n + 1)t
Pour n € N, on pose u,, = / w
o sin(t)

Q 6. Justifiez I'existence de l'intégrale wu,,.

dt.

Q 7. Soit p,q deux réels. Donnez une expression de sinp — sing en fonction de sin P4y . vous pouvez donner une
2
réponse sans rédiger de démonstration.

Q 8. En calculant w, 11 — u,, montrez que la suite (u,) est constante, puis donnez la valeur de toutes les intégrales u,,.

IV. Etude d’une fonction

1 1
On pose f(t) = 7 s W 10, 7/2].



Q 9. Justifiez que f est de classe C' sur ]0,7/2].

Q 10. Montrez qu’on peut prolonger f par continuité en 0 en précisant la valeur de f(0).

—1
Q 11. Montrez que f ainsi prolongée est de classe C* sur [0,7/2] en vérifiant que f'(0) = 5
V. Calcul de I

™/2 gin((2n + 1)t)
t

Pour n € N, on pose v,, = / dt.
0

Q 12. Justifiez 'existence de lintégrale v,,.
Q 13. En utilisant les parties précédentes, montrez que v,, — u, a pour limite 0 quand n — +oo.

Q 14. Concluez ce probléme en donnant la valeur de l'intégrale I, en justifiant bien sir.

VI. Deux autres intégrales

. o0 1 — cost -
Q 15. Montrez que l'intégrale / 5 dt converge et que sa valeur est également 5"
0
. T gin? ¢ .
Q 16. Montrez que l'intégrale / 2 dt converge et que sa valeur est aussi 5"
0
FoRk kKRR
Probléeme 2 - Normes p

1 1
Dans tout le probléme, p désigne un réel strictement supérieur a 1 et g 'unique réel tel que — + — = 1.
p q

On pose alors
— C lensemble des fonctions continues sur [0, +o00[ & valeurs réelles
— Ey={f€C / f intégrable sur [0, +0c[}, ensemble des fonctions continues et intégrables sur [0, +oo]

— E,={feC/|f]"€En}

+oo
Q 1. Montrez que E; est un R-espace vectoriel et que la notation | f|j; = / | f| désigne une norme sur Ej.
0

Q 2.
a) Montrez que pour tout (a,b) € R% |a + b|? < 2P(|a|? + |b[P).
b) Montrez que E, est aussi un R-espace vectoriel.

1/p

—+oo
Pour J & By, onpose |1, = [ 117)
Q 3. Justifiez que la notation | . ||, vérifie deux des trois axiomes d’une norme.
1 1
Q 4. En utilisant une propriété de concavité, montrez que pour tout (z,y) € Ri, Ty < ;a?p + —y9.

q

Q 5. Soit f, g deux éléments non nuls de E, et E, respec‘Tiv‘ement. Mo|nt|rez que fg € Ey et que |[fglli < | fllp-llgllq-
f g
t —

ety = .
£l 9llq

Q 6. Soit f, g deux élements non nuls de E,. Justifiez que |f + g|P~! € E,, puis montrez que ||f + gll, < || fll, + |lgll,-
Concluez cette série de questions : que venez-vous de montrer & propos de la notation || . ||, ?

Indication : utiliser ’inégalité précédente avec x =



Devoir surveille 1 - Corrigé

Exercice

Q 1.

Q 3.

II.

Q 4.
Q 5.

f est continue sur R donc d’aprés le th. des valeurs intermédiaires, f(A) est un intervalle. Or Emf = +o0 et
oo
lim f = —o0, donc f(A) =] — oo, +oo[=R.
—0o0
Donc f est surjective.
f étant surjective, la partie A est donc non vide.
De plus, comme Emf = +00, il existe b € R tel que pour tout = > b, f(z) > a+ 1.
o0
Donc A est majorée par b : en effet, s’il existe z € A tel que x > b, alors f(x) = a > a+ 1 ce qui est contradictoire,
donc ceci prouve par 'absurde que pour tout =z € A, x < b.

De méme, on montre que A est minorée, car lim f = —oo.

— 00
Conclusion : A est une partie de R, non vide et majorée, donc elle posséde une borne supérieure. De méme, elle
posséde une borne inférieure.

Pour montrer que s = max A, il suffit de montrer que s € A, puisque s est un majorant de A par définition.
Comme s = sup A4, il existe une suite (z,,) € A" qui converge vers s.

Comme f est continue sur R, la suite (f(z,)) converge vers f(s). Or comme pour tout n € N, z,, € A, on a
f(x,) = a :la suite (f(z,)) est donc constante égale & a, donc converge aussi vers a.

Par unicité de la limite, f(s) = a, i.e. s € A.

Donc A contient sa borne supérieure, celle-ci est donc son maximum.

Probléme 1

. sint . . sint . .,
La fonction ¢ — — est continue sur ]0, 1], positive et - ﬁ 1, donc on a une fausse singularité en 0 :
—

1 .
Sin ¢
Iintégrale P converge.
0 t

1
S

cost

cost teo g
La fonction t +— R est continue sur [1, +oo[ et pour tout ¢t > 1, - . Or l'intégrale / — dt converge,
1

t2

+oo
L cost
donc l'intégrale / TR dt est absolument convergente, donc convergente.
1

Soit x > 1. Par intégration par parties, on a

/3c sint dt — [_COStr _/x costdt
Lt t |, Lt

¥ cost
or d’apreés la question précédente, 'intégrale / R dt a une limite finie quand x tend vers +oo
1

=0.

—cost]” cos cos 1 . coszT
t =cos1 — —— cos 1, car < —, donc par encadrement, lim
t =1 x r—-+00 x N

¥ sint
donc par opérations sur les limites, 'intégrale / - dt a une limite finie quand = tend vers +oo0, i.e. I'intégrale
1

too sint
—~ dt converge.
1

Intégration par parties : je ne détaille pas.

b)) 1 [
Par inégalité triangulaire, pour tout « > 0, |F(z)| < |f(xa)| + |fi ) + ;/ [£(t)].

r——+o0

b
La constante K = |f(a)| + |f(b)] —|—/ |f'(t)| convient. Par encadrement, on en déduit que lim F(z) = 0.



I11.
in((2 1t
Q 6. La fonction t — w
sin(t)
fausse singularité en 0 : I'intégrale w,, converge.

Q7. sinp—sing = 2sin <p—q) cos (p—i—q).

sin((2n + 1)t)
sin(¢) t—0

est continue sur ]0,7/2], positive et (2n + 1), donc on a une

2 2

dt

Q 8. Pour tout n € N, upt41 —u, = /Tr/2 sin((2n + 3)t) — sin((2n + 1)) dt = 2/77/2 sin(t) cos((2n + 2)t)
0 0

sin(t) sin(t)

sin((n+ 290177 1 .
n—i—2L_0 T ht2 (sin((n + 1)m) —sin0) = 0.

= 2/;/2 cos((2n +2)t) dt = {

T
Ceci prouve donc que la suite (u,,) est constante, sa valeur est donc celle de ug, qui vaut 5"

IV.

Q 9. La fonction sin est de classe C'! sur 10, /2] et ne s’y annule pas donc son inverse est aussi de classe C' donc par
opérations sur les fonctions de classe C!, f 'est aussi.

int—t int—t 3
Q 10. Pour t € ]0,7/2], f(t) = Sltnsint ot Sth . Or on connait un d.l. de sin en 0 : sint = t — — + o(t*) donc
: —t? -
sint — tt:o ?, donc f(t) t:O H E}

On peut donc prolonger f par continuité en 0 en posant f(0) = 0.
Q 11. J’utilise le th. de limite de la dérivée dont je rappelle ’énoncé :

si f est continue sur [0, a], de classe C! sur ]0,a] et si f’ a une limite finie £ en a, alors f est de classe C"! sur [0, a
et f'(0) = 4.
Ici, f prolongée par continuité satisfait les deux premiéres hypothéses, il reste & calculer tlir% 1(t).
—
-1 cost t?cost —sin?t  t?cost — sin’ ¢

Or f'(t) = — + = ~ : on effectue donc un d.l. du numérateur & ’ordre 4.
70 12 sin?¢ t2sin? ¢ t4

2 ¢ 3 2
t? cost — sin® t = t* (1 -+ — +o(t4)> — (t - —+ 0(t4)>

2 24 6
t t*
=(tP— =) - (t?—2= t4
(7=5) - (#25) ot
4 . 4
= )~ —
6 + o(t?) 5

-1 -1
done f'(t) ~ & 755 6

D’aprés le th. rappelé précédemment, f est de classe C' sur [0, 7/2].

V.

in((2 1)t
Q 12. Toujours pareil : sin((2n + 1)t)

t t—0

(2n + 1), donc on a une fausse singularité en 0 : I'intégrale v,, converge.

/2
Q13. v,—u, = / f(t)sin((2n+1)t) dt, or f est de classe C* sur [0, 7/2] donc d’aprés le lemme de Lebesgue, v,, —u,

0
tend vers 0 quand n tend vers +oco.

Q 14. On a montré précédemment que u, = g, donc grace & la question précédente, on en déduit que v, Tﬂ: g
2n+1)m/2 sin 400 - ¢
; Y . e sin
Par changement de variable y = (2n+1)¢t, on a v, = dy et on sait que l'intégrale I = / —~ dt
0

0
converge, donc lif}rl v, = I (caractérisation séquentielle de la limite).
n—-—+0o0



VI.
Q 15.

Q 16.

Conclusion : I = g

1—cost 1 1—cost
La fonction ¢ — ———— est continue sur |0, +o00[, a pour limite 5 en 0 (d.l. de cos...) et ‘

t2 t2

A ) ) . L T 1 —cost
par les mémes arguments que ceux développés en partie 1, 'intégrale ————— dt converge.

0 t2

Une intégration par parties donne

To° 1 — cost 1—cost]™™ T gint
e dt= ||+ at
0 t L t=0 Jo t

Cette intégration par parties est licite puisque les deux intégrales convergent.
1—cost 1—cost T 1 — cost T sint 0
Orlim — =0et lim — =0, donc ———dt = —dt = —.
t=0 to+oo 0 t2 0 t 2
.2

sin
La fonction ¢ 2

1
tiga

sin?t
t2

est continue sur |0, +oo[, a pour limite 1 en 0 et donc par les mémes arguments

‘s
sin? ¢
t2

+oo
que ceux développés en partie 1, l'intégrale / dt converge.
0

+oo
1 —cost
On effectue le changement de variables ¢ = 2u dans intégrale / ST g (changement de variable C* et

0 t2

+o0 +oo
1 —cost 1-—- 2
bijectif) : / R = / L= cosZu) g,
0 t 0 2u
+oo 400 .2
1 —cost 3

or cos(2u) = 1 — 2sin? u donc / $ dt = / meu du= <

0 t 0 U 2

Probléme 2

C’est presque une question de cours.
C est un R-espace vectoriel connu et F; est une partie de C, non vide (F; contient la fonction nulle).

Soit (f,g) € E? et A € R.
“+o0 “+ o0

f est intégrable sur [0, +oo[ donc / | f| converge, donc par linéarité de l'intégrale, / [Al.|f| converge aussi,
0 0

+oo
autrement dit / |[Af| converge, donc Af est intégrable sur [0, +oo[, donc \f € Ej.
0

+oo +oo
De méme, comme 0 < |f+g| < |f|+]g] et les intégrales / |f] et / |g| convergent, alors par th. de comparaison
0 0

+oo
d’intégrales de fonctions positives (TCIFP), l'intégrale / |+ g| converge, donc f + g est intégrable sur [0, +o00],
0
i.e. f +g € El.

Tout ceci prouve que F; est un sous-espace vectoriel de C, donc lui-méme un R-espace vectoriel.

—+oo —+o0 +oo
De plus, la linéarité de I'intégrale donne directement ||\f]|; :/ [Af] :/ IAlLLf] = \)\|/ 1= 1M1
0 0 0

“+o0 “+o0
De meéme, comme 0 < |f 4+ g| < |f] + |g], la croissance de intégrale donne / |f+g| < / (f1 + lg) =
0 0

“+oo +oo
|t [ el e 17+ gl < Sl + gl
0 0

Enfin, si ||f||; = 0, alors comme |f]| est une fonction continue, positive, d’intégrale nulle, on en déduit par stricte
positivité de lintégrale que |f| = 0, donc que f = 0 (la réciproque étant vraie bien sir).

Au total, || . ||1 est une norme sur Ej.



a) Par inégalité triangulaire, |a + b| < |a| + |b]. Je note M = max(|al,|b]), alors |a| + |b] < 2M, donc |a + b] <

La fonction puissance p-éme est croissante sur Ry donc |a + b|P < (2M)P = 2P MP.

Et on a aussi MP = max(|a|?, |b|P) < |a|? + |b|P, donc au total, |a + b|” < 2P(|a|? + |b]P).

b) 1l s’agit de la méme démonstration que celle de la question Q 1, en remplagant I'inégalité triangulaire 0 < |f +g| <

Q 3.

Q 4.

Q 5.

|1+ lg], qui avait permis de montrer la stabilité par 4, par I'inégalité ci-dessus.

Ici encore, c’est la méme démonstration qu’en question Q 1 en ce qui concerne les axiomes de séparation et
d’homogénéité. L’inégalité triangulaire, elle, est traitée dans la suite.

1
La fonction In est concave sur R’ donc comme — + — =1, 0n a
p q

1 1 1 1
pour tout z,y > 0, — In(z”) + = In(y?) < In (xp + yq).
p q p q

En appliquant ’exponentielle, qui est croissante, on obtient l'inégalité voulue mais seulement quand x et y sont
non nuls. 11 est facile de voir qu’elle est valable si I'un des deux est nul.

f g
| f] ot y = g 7
I £1lp lgllg

non nulles. Dans le cas contraire, la propriété demandée est évidente.

1P 1
/1 X 9 < - /] + - lg/” Comme |f|? et |g|? sont intégrables sur [0, +o00[, par TCIFP, la fonction

£~ Nglle ~ 2 A5 allglls
[fl-1g] = |fg| Vest aussi.

On utilise I'indication donnée : on pose z = ce qui n’est possible que si les deux fonctions sont

On a donc

De plus, en intégrant sur [0, +o0] :

1 +00 1 +oo 1 +oo
L [ pl < / P+ / 1919
1FToTaTa / oI alal?

1
72+ =gl
pIIfH”H Is+ gmaola
1 1
p q

400
donc / 1£9l < 1 lo-lgller dee. 17l < 1A Lp-Ngll

q= Z% donc (|f +g|P" D9 =|f+gP. Or f,g € E, et E, est un espace vectoriel, donc f + g € E,, i.e. |f + g|°
est intégrable sur [0, +oo[, donc |f + g|P~! € E,.

Or [f+gIP = [f +gl < |f+glP " <If > |f +alP~" + gl x [f + g7~
Comme f,g € E, et |f + glP~t e E,, on peut utiliser le résultat de la question Q 5 :

400
/0 AL L+ glP™t + gl < 1f + glP < U llp- Il + g1P~ g + Ngllp-lLf + g1P g

e +oo 1/q
done | |f+g|p=||f+9||§<(||f||p+gp).(/o |f+g|p>

1-1/q

“+o0
donc (/ |f+g|p> <Nl + Igls e 1 +gllp < 11l = gl

Ceci prouve donc 'inégalité triangulaire pour la notation || . ||,. Au total, il a donc été montré que || . ||, est une
norme.



