Problème 1 - Fonction de Bessel

On définit la fonction $f: \mathbb{R} \to \mathbb{R}$ par :

$$\forall x \in \mathbb{R}, \quad f(x) = \int_0^{\pi} \cos(x \sin(t)) dt.$$

Pour tout $n \in \mathbb{N}$, on note :

$$W_n = \int_0^\pi \sin^{2n}(t) \, \mathrm{d}t.$$

- **Q 1.** Montrer que f est bien définie sur \mathbb{R} .
- **Q 2.** Montrer que f est de classe \mathscr{C}^2 sur \mathbb{R} et donner des expressions sous forme d'intégrales de f'(x) et f''(x) pour tout $x \in \mathbb{R}$.
- **Q 3.** Soit une fonction $h: \mathbb{R}^2 \to \mathbb{R}$ définie par :

$$\forall (x,t) \in \mathbb{R}^2, \quad h(x,t) = \cos(t)\sin(x\sin(t)).$$

Déterminer $\frac{\partial h}{\partial t}(x,t)$ pour tout $(x,t) \in \mathbb{R}^2$.

 ${f Q}$ 4. En déduire que f est solution de l'équation différentielle :

$$xy'' + y' + xy = 0. (\mathbf{E})$$

Q 5. On suppose qu'il existe une solution de (\mathbf{E}) développable en série entière notée $\sum_{n\geqslant 0}a_nx^n$ de rayon de convergence R>0.

Montrer que $a_1 = 0$ et que pour tout $n \in \mathbb{N}, n \geqslant 2$:

$$a_n = -\frac{a_{n-2}}{n^2}.$$

- **Q 6.** En utilisant un théorème d'interversion série intégrale, montrer que f est développable en série entière au voisinage de 0 et exprimer les coefficients du développement de f en fonction des termes de la suite $(W_n)_{n\in\mathbb{N}}$.
- **Q 7.** Déduire des questions précédentes que f est l'unique solution développable en série entière de (\mathbf{E}) vérifiant $f(0) = \pi$.
- **Q 8.** En déduire, pour tout $n \in \mathbb{N}$, une expression de W_n en fonction de n.

Problème 2 - Marche aléatoire sur \mathbb{Z}

On considère une particule se déplaçant sur une droite graduée par les entiers relatifs. Sa position à l'instant initial t=0 est k=0. À chaque instant $t \in \mathbb{N}^*$, elle se déplace aléatoirement de sa position $k \in \mathbb{Z}$ à la position k+1 ou k-1.

Soit $p \in]0,1[$. On définit sur un espace probabilisé $(\Omega,\Sigma,\mathbb{P})$ une suite de variables aléatoires $(X_t)_{t\in\mathbb{N}^*}$ indépendantes et identiquement distribuées dont la loi est définie par :

$$\forall t \in \mathbb{N}^*, \quad \mathbb{P}(X_t = 1) = p \quad \text{ et } \quad \mathbb{P}(X_t = -1) = 1 - p.$$

Enfin, pour tout $n \in \mathbb{N}^*$, on pose $S_n = \sum_{t=1}^n X_t$.

Pour tout $t \in \mathbb{N}^*$, la variable aléatoire X_t modélise le déplacement de la particule à l'instant t.

Si $X_t = 1$, la particule se déplace vers la droite. Si $X_t = -1$, la particule se déplace vers la gauche. Ainsi, pour tout $n \in \mathbb{N}^*$, S_n modélise la position de la particule après n déplacements.

I. Un développement en série entière

Q 1. Soit $\alpha \in \mathbb{R}$ tel que $\alpha \notin \mathbb{N}$. Donner sans démonstration un développement en série entière de la fonction réelle $x \mapsto (1+x)^{\alpha}$ au voisinage de 0 en précisant son rayon de convergence. Remarque : si un symbole $\binom{?}{?}$ est utilisé avec l'un des deux paramètres non entier, il devra être explicité, sans quoi le résultat ne sera pas pris en compte.

Q 2. En déduire que pour tout $x \in]-1;1[:$

$$\frac{1}{\sqrt{1-x}} = \sum_{n=0}^{+\infty} \frac{1}{2^{2n}} \binom{2n}{n} x^n.$$

II. Probabilité de retour à l'origine

On définit la suite $(u_n)_{n\in\mathbb{N}^*}$ par :

$$\forall n \in \mathbb{N}^*, \quad u_n = \mathbb{P}(S_n = 0).$$

- **Q 3.** Pour tout $t \in \mathbb{N}^*$, déterminer la loi de la variable aléatoire $\frac{X_t + 1}{2}$. En déduire que pour tout $n \in \mathbb{N}^*$, la variable aléatoire $\sum_{t=1}^{n} \frac{X_t + 1}{2}$ suit une loi binomiale dont on précisera les paramètres.
- **Q 4.** En déduire que pour tout $n \in \mathbb{N}^*$:

$$u_n = \begin{cases} \binom{n}{\frac{n}{2}} \left(p(1-p)\right)^{\frac{n}{2}} & \text{si } n \text{ est pair} \\ 0 & \text{sinon.} \end{cases}$$

Q 5. Déterminer la limite de la suite $(u_{2n})_{n\in\mathbb{N}^*}$ lorsque n tend vers $+\infty$ selon les valeurs de p et interpréter le résultat.

III. Nombre de passages par l'origine

Pour tout $j \in \mathbb{N}$, on note O_{2j} la variable aléatoire égale à $\begin{cases} 1 \text{ si la particule est à l'origine à l'instant } t = 2j \\ 0 \text{ sinon} \end{cases}$

Pour tout $n \in \mathbb{N}$, on pose $T_n = \sum_{j=0}^n O_{2j}$. On note $\mathbb{E}(T_n)$ l'espérance de la variable aléatoire T_n .

Dans cette partie, on souhaite déterminer $\lim_{n\to+\infty} \mathbb{E}(T_n)$.

- **Q 6.** Soit $n \in \mathbb{N}$. Que modélise la variable aléatoire T_n ?
- **Q 7.** Soit $j \in \mathbb{N}$. Déterminer la loi de la variable aléatoire O_{2j} . En déduire que :

$$\mathbb{E}(T_n) = \sum_{j=0}^n \binom{2j}{j} (p(1-p))^j.$$

- **Q 8.** On suppose dans cette question que $p \neq \frac{1}{2}$. En utilisant le résultat de **Q 2**, calculer $\lim_{n \to +\infty} \mathbb{E}(T_n)$ et interpréter le résultat.
- **Q 9.** On suppose dans cette question que $p=\frac{1}{2}$. Montrer par récurrence que :

$$\forall n \in \mathbb{N}, \quad \mathbb{E}(T_n) = \frac{2n+1}{2^{2n}} \binom{2n}{n}$$

et en déduire $\lim_{n\to+\infty} \mathbb{E}(T_n)$.

Problème 3 - Puissances de matrices et limites de suites de matrices

Soit $(n,p) \in \mathbb{N}^* \times \mathbb{N}^*$. On s'intéresse ici à la convergence des suites matricielles $(M_k)_{k \in \mathbb{N}}$ où pour tout $k \in \mathbb{N}$, $M_k \in \mathcal{M}_{n,p}(\mathbb{C})$ avec p = 1 (matrices colonnes) ou p = n (matrices carrées). Pour tout $k \in \mathbb{N}$, on note alors $M_k = \left(m_{i,j}^{(k)}\right)_{(i,j) \in [\![1;n]\!] \times [\![1;p]\!]}$ ou plus simplement $M_k = \left(m_{i,j}^{(k)}\right)$.

On suppose que l'espace vectoriel $\mathcal{M}_{n,p}(\mathbb{C})$ est muni d'une norme notée $\|.\|$ indifféremment des valeurs de n et p. En particulier, si $V \in \mathcal{M}_{n,1}(\mathbb{C})$, V est une matrice colonne assimilée à un vecteur de \mathbb{C}^n et on note $\|V\|$ sa norme.

On s'intéresse en particulier à la suite des puissances itérées $\left(M^k\right)_{k\in\mathbb{N}}$ d'une matrice donnée $M\in\mathscr{M}_n(\mathbb{C})$.

I. Limite des puissances d'une matrice

Soit $n \in \mathbb{N}^*$. On considère l'espace vectoriel \mathbb{C}^n muni d'une norme notée $\|.\|$. On note sa base canonique $\mathscr{B} = (e_1, \ldots, e_n)$. Soit u un endomorphisme de \mathbb{C}^n vérifiant la propriété suivante :

$$\forall \lambda \in \mathrm{Sp}(u), \quad |\lambda| < 1$$

où $\operatorname{Sp}(u)$ est l'ensemble des valeurs propres de u. On note A la matrice de l'endomorphisme u dans la base \mathscr{B} .

L'objectif de cette partie est de montrer que $\lim_{k\to +\infty} A^k = 0$.

On suppose (sauf en ${f Q}$ 5) que A=T où T est une matrice triangulaire supérieure :

$$T = \begin{pmatrix} \lambda_1 & * & \dots & * \\ 0 & \lambda_2 & * & \dots & * \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & * \\ 0 & \dots & \dots & 0 & \lambda_n \end{pmatrix}.$$

Q 1. Montrer que $\lim_{k\to +\infty} \|u^k(e_1)\| = 0$ et en déduire $\lim_{k\to +\infty} u^k(e_1)$.

Soit $i \in [1; n-1]$ tel que pour tout $j \in [1; i]$, $\lim_{k \to +\infty} u^k(e_j) = 0$.

Q 2. Montrer qu'il existe $x \in \text{vect}(e_j)_{j \in [1:i]}$ tel que :

$$u(e_{i+1}) = \lambda_{i+1}e_{i+1} + x.$$

En déduire que pour tout $k \in \mathbb{N}^*$:

$$u^{k}(e_{i+1}) = \lambda_{i+1}^{k} e_{i+1} + \sum_{m=0}^{k-1} \lambda_{i+1}^{k-m-1} u^{m}(x).$$

- **Q 3.** Montrer que $\lim_{k\to +\infty} \left\| \sum_{m=0}^{k-1} \lambda_{i+1}^{k-m-1} u^m(x) \right\| = 0$. En déduire que $\lim_{k\to +\infty} u^k(e_{i+1}) = 0$.
- **Q 4.** Montrer alors que $\lim_{k\to +\infty} T^k = 0$.
- **Q 5.** On ne suppose plus que A est triangulaire supérieure. Montrer que $\lim_{k\to +\infty}A^k=0$.

II. Matrices à diagonale strictement dominante

On dit qu'une matrice $A = (a_{i,j}) \in \mathscr{M}_n(\mathbb{C})$ est à diagonale strictement dominante quand :

$$\forall i \in \llbracket 1; n \rrbracket, \quad |a_{i,i}| > \sum_{\substack{j=1\\j \neq i}}^{n} |a_{i,j}|.$$

Dans les questions \mathbf{Q} 6 à \mathbf{Q} 8, A est une matrice de $\mathscr{M}_n(\mathbb{C})$ à diagonale strictement dominante et on veut montrer qu'elle est inversible. On raisonne par l'absurde : on suppose donc que A n'est pas inversible.

3

- **Q 6.** Justifier l'existence d'une matrice colonne $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \neq 0$ telle que AX = 0.
- **Q 7.** On choisit $i_0 \in [1; n]$ tel que $|x_{i_0}| = \max_{j \in [1; n]} |x_j|$: justifier que $x_{i_0} \neq 0$.

Montrer que
$$|a_{i_0,i_0}x_{i_0}| \leq \sum_{\substack{j=1\\j\neq i_0}}^n |a_{i_0,j}|.|x_{i_0}|.$$

III. Application à la méthode de Gauss-Seidel

Soit $A \in \mathcal{M}_n(\mathbb{C})$ une matrice à diagonale strictement dominante.

On définit ensuite $M \in \mathcal{M}_n(\mathbb{C})$ et $F \in \mathcal{M}_n(\mathbb{C})$ de la manière suivante : pour tout $(i,j) \in [1;n]^2$,

- $\begin{array}{l} \text{- si } i\geqslant j, \ m_{i,j}=a_{i,j} \ \text{et} \ f_{i,j}=0 \, ; \\ \text{- si } i< j, \ m_{i,j}=0 \ \text{et} \ f_{i,j}=-a_{i,j}. \end{array}$

Ainsi, A = M - F où F est la partie triangulaire supérieure de diagonale nulle de -A et où M est la partie triangulaire inférieure de A.

Soit $Y \in \mathcal{M}_{n,1}(\mathbb{C})$. On note $X \in \mathcal{M}_{n,1}(\mathbb{C})$ l'unique matrice colonne telle que :

$$AX = Y$$
.

Le but de cette partie est de trouver une suite qui converge vers X.

 \mathbf{Q} 9. Justifier que M est inversible.

Dans la suite de cette partie, on pose $B = M^{-1}F$. On définit par récurrence une suite de matrices colonnes $(X_k)_{k \in \mathbb{N}}$ avec $X_0 \in \mathcal{M}_{n,1}(\mathbb{C})$ quelconque et :

$$\forall k \in \mathbb{N}, \quad X_{k+1} = BX_k + M^{-1}Y.$$

Q 10. Montrer que $X = BX + M^{-1}Y$.

Soit λ une valeur propre quelconque de la matrice B. On note $V \in \mathcal{M}_{n,1}(\mathbb{C})$ un vecteur propre de B associé à cette valeur propre.

Q 11. Montrer que $FV = \lambda MV$. En déduire que :

$$\forall i \in \llbracket 1, n \rrbracket, \quad |\lambda a_{i,i}| \leqslant \left(\sum_{j=i+1}^n |a_{i,j}| + |\lambda| \sum_{j=1}^{i-1} |a_{i,j}| \right).$$

puis montrer que $|\lambda| < 1$.

Q 12. Montrer que $\lim_{k \to +\infty} B^k = 0$.

Q 13. Montrer que :

$$\forall k \in \mathbb{N}, \quad X_k - X = B^k(X_0 - X)$$

et conclure.

Problème 1

Q 1. Pour tout $x \in \mathbb{R}$, l'application $t \longmapsto \cos(x\sin(t))$ est continue sur le segment $[0,\pi]$ donc l'intégrale $\int_0^{\pi} \cos(x\sin(t)) dt$ est bien définie.

$$f$$
 est bien définie sur \mathbb{R} .

- **Q 2.** On definit l'application $g: \left\{ \begin{array}{ccc} \mathbb{R} \times [0,\pi] & \longrightarrow & \mathbb{R} \\ (x,t) & \longmapsto & g(x,t) = \cos(x\sin(t)) \end{array} \right.$
 - Pour tout $t \in [0, \pi], x \mapsto g(x, t)$ est de classe \mathscr{C}^2 sur \mathbb{R} et pour tout $x \in \mathbb{R}$, on a :

$$\frac{\partial g}{\partial x}(x,t) = -\sin(t)\sin(x\sin(t)) \quad \text{et} \quad \frac{\partial^2 g}{\partial x^2}(x,t) = -\sin^2(t)\cos(x\sin(t)).$$

- Pour tout $x \in \mathbb{R}$, les applications $t \mapsto g(x,t), t \mapsto \frac{\partial g}{\partial x}(x,t)$ et $t \mapsto \frac{\partial^2 g}{\partial x^2}(x,t)$ sont continues par morceaux sur $[0,\pi]$ (segment) donc intégrables sur $[0,\pi]$.
- Hypothèse de domination : pour tout $(x,t) \in \mathbb{R} \times [0,\pi]$, on a :

$$\left|\frac{\partial^2 g}{\partial x^2}(x,t)\right| = \left|\sin^2(t)\cos(x\sin(t))\right| \leqslant 1 = \varphi(t)$$

et la fonction constante $\varphi = 1$ est intégrable sur $[0, \pi]$.

Conclusion : Par le théorème de dérivations successives pour les intégrales à paramètre, f est de classe \mathscr{C}^2 sur \mathbb{R} et on a : :

$$\forall x \in \mathbb{R}, \quad f'(x) = -\int_0^{\pi} \sin(t)\sin(x\sin(t)) dt \quad \text{ et } \quad f''(x) = -\int_0^{\pi} \sin^2(t)\cos(x\sin(t)) dt.$$

Q 3. Par la formule de dérivation d'un produit, on a :

$$\forall (x,t) \in \mathbb{R}^2, \quad \frac{\partial h}{\partial t}(x,t) = -\sin(t)\sin(x\sin(t)) + x\cos^2(t)\cos(x\sin(t)).$$

Q 4. Pour tout $x \in \mathbb{R}$, on a les égalités suivantes :

$$xf''(x) + f'(x) + xf(x) = \int_0^{\pi} \left(-x\sin^2(t)\cos(x\sin(t)) - \sin(t)\sin(x\sin(t)) + x\cos(x\sin(t)) \right) dt$$

$$= \int_0^{\pi} \left(x(1 - \sin^2(t))\cos(x\sin(t)) - \sin(t)\sin(x\sin(t)) \right) dt$$

$$= \int_0^{\pi} \left(x(\cos^2(t))\cos(x\sin(t)) - \sin(t)\sin(x\sin(t)) \right) dt$$

$$= \int_0^{\pi} \frac{\partial h}{\partial t}(x, t) dt = \left[h(x, t) \right]_{t=0}^{t=\pi} = \left[\cos(t)\sin(x\sin(t)) \right]_{t=0}^{t=\pi} = 0$$

Q 5. On note $g: x \in]-R, R[\mapsto \sum_{n=0}^{+\infty} a_n x^n$ une solution développable en série entière (avec R > 0 par hypothèse).

En tant que série entière,

$$\forall x \in]-R, R[, \quad g(x) = \sum_{n=0}^{+\infty} a_n x^n \quad g'(x) = \sum_{n=1}^{+\infty} n a_n x^{n-1} \quad g''(x) = \sum_{n=2}^{+\infty} n(n-1) a_n x^{n-2}$$

On a donc l'égalité suivante :

 $\forall x \in]-R,R[:$

$$xg''(x) + g'(x) + xg(x) = \sum_{n=1}^{+\infty} n(n-1)a_n x^{n-1} + \sum_{n=1}^{+\infty} na_n x^{n-1} + \sum_{n=0}^{+\infty} a_n x^{n+1}$$

$$= \sum_{n=1}^{+\infty} n^2 a_n x^{n-1} + \sum_{n=0}^{+\infty} a_n x^{n+1} = \sum_{p=0}^{+\infty} (p+1)^2 a_{p+1} x^p + \sum_{p=1}^{+\infty} a_{p-1} x^p$$

$$= a_1 + \sum_{p=1}^{+\infty} \left((p+1)^2 a_{p+1} + a_{p-1} \right) x^p = 0$$

Par unicité du développement en série entière sur un voisinage de 0, tous les coefficients de cette série entière sont nuls c'est-à-dire : $a_1=0$ et $\forall p\in\mathbb{N}^*,\ (p+1)^2a_{p+1}+a_{p-1}=0$.

En posant $n = p + 1 \geqslant 2$, $a_1 = 0$ et pour tout entier $n \geqslant 2$, $a_n = -\frac{a_{n-2}}{n^2}$.

Q 6. On sait que pour tout $\theta \in \mathbb{R}$: $\cos(\theta) = \sum_{n=0}^{+\infty} (-1)^n \frac{\theta^{2n}}{(2n)!}$ (série entière de référence).

En particulier, avec $\theta = x \sin(t)$, pour tout $(x, t) \in \mathbb{R}^2$, on a:

$$\cos(x\sin(t)) = \sum_{n=0}^{+\infty} (-1)^n \frac{\sin^{2n}(t)}{(2n)!} x^{2n}$$

Dans ce qui suit, x est un réel fixé.

On définit alors $\mu_n(t) = (-1)^n \frac{\sin^{2n}(t)}{(2n)!} x^{2n}$ pour tout $t \in [0, \pi]$.

Par construction des fonctions μ_n , la série de fonctions $\sum \mu_n$ converge simplement sur $[0,\pi]$ et a pour somme $S:t\in[0,\pi]\longmapsto\cos(x\sin(t))$.

On montre que $\sum \mu_n$ converge normalement sur ce segment.

$$\forall t \in [0, \pi], \quad |\mu_n(t)| = \frac{|\sin^{2n}(t)|}{(2n)!} |x|^{2n} \leqslant \frac{|x|^{2n}}{(2n)!}.$$

Et donc $\|\mu_n\|_{\infty,[0,\pi]} = \sup_{t \in [0,\pi]} |\mu_n(t)| \le \frac{|x|^{2n}}{(2n)!}$.

Or $\sum \frac{x^{2n}}{(2n)!}$ converge absolument (et a pour somme $\operatorname{ch}(x)$), donc par comparaison, $\sum \|\mu_n\|_{\infty,[0,\pi]}$ converge aussi.

Ainsi $\sum \mu_n$ converge normalement et donc uniformément sur le segment $[0,\pi]$. Comme les fonctions μ_n sont continues sur $[0,\pi]$, le théorème d'intégration terme à terme permet d'écrire :

$$\int_0^{\pi} \sum_{n=0}^{+\infty} \mu_n(t) \, dt = \sum_{n=0}^{+\infty} \int_0^{\pi} \mu_n(t) \, dt$$

ou encore : $f(x) = \int_0^\pi \sum_{n=0}^{+\infty} (-1)^n \frac{\sin^{2n}(t)}{(2n)!} x^{2n} dt = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n}}{(2n)!} \int_0^\pi \sin^{2n}(t) dt.$

On a donc démontré, que :

$$\forall x \in \mathbb{R}, \quad f(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{W_n}{(2n)!} x^{2n}.$$

En particulier f est bien développable en série entière $(R = +\infty)$.

Q 7. Tout d'abord, f est bien une solution de **(E)** sur \mathbb{R} (**Q4**), elle est bien développable en série entière (**Q6**) et elle vérifie $f(0) = \int_0^{\pi} \cos(0) dt = \pi$.

On remarque aussi que tous les coefficients d'indice impairs du développement en série entière de f sont nuls, que $a_0 = f(0) = \pi$ et que (d'aprés (Q5)) ceux d'indices pairs vérifient : si $n \ge 1$, $a_{2n} = -\frac{a_{2(n-1)}}{(2n)^2}$.

Maintenant, si \tilde{f} est une solution de **(E)** sur] -R, R[, développable en série entière et si elle vérifie $f(0) = \pi$, alors, d'après **(Q5)**, $\tilde{a}_1 = 0$ et pour tout entier $n \ge 2$, $\tilde{a}_n = -\frac{\tilde{a}_{2n-2}}{(2n)^2}$.

Par une récurrence immédiate, on montrerait que pour tout $n \in \mathbb{N}$, $\tilde{a}_{2n+1} = 0 = a_{2n+1}$.

De plus $\tilde{a}_0 = \tilde{f}(0) = \pi$ et si $n \ge 1$, $\tilde{a}_{2n} = -\frac{\tilde{a}_{2(n-1)}}{(2n)^2}$. Par une récurrence immédiate, on montrerait que pour tout $n \in \mathbb{N}$, $\tilde{a}_{2n} = a_{2n}$.

Et finalement, $\tilde{f} = f$ (et $R = +\infty$).

On a donc démontré que :

f est la seule solution de (E) développable en série entière et vérifiant $f(0) = \pi$.

Q 8. On sait que pour tout
$$x \in \mathbb{R}$$
, $f(x) = \sum_{n=0}^{+\infty} a_{2n} x^{2n} = \sum_{n=0}^{+\infty} \frac{(-1)^n W_n}{(2n)!} x^{2n}$

Or
$$a_{2n} = -\frac{1}{(2n)^2} a_{2(n-1)} = (-1)^2 \frac{1}{(2n)^2 (2n-2)^2} a_{2(n-2)} = \dots = \frac{(-1)^n}{2^{2n} (n!)^2} a_0 = \frac{(-1)^n}{2^{2n} (n!)^2} \pi.$$

Par unicité du développement en série entière, pour tout $n \in \mathbb{N}$, on a $a_{2n} = \frac{(-1)^n}{2^{2n}(n!)^2}\pi = \frac{(-1)^n W_n}{(2n)!}$. Et donc

$$\forall n \in \mathbb{N}, \ W_n = \frac{(2n)!}{2^{2n}(n!)^2} \pi = \frac{1}{2^{2n}} \binom{2n}{n} \pi.$$

Problème 2

I.

Q 1. C'est une série entière de référence. Puisque $\alpha \notin \mathbb{N}$, son rayon de convergence est R = 1

$$\forall x \in]-1,1[, \qquad (1+x)^{\alpha} = 1 + \sum_{n=1}^{+\infty} \alpha(\alpha-1)\cdots(\alpha-n+1)\frac{x^n}{n!}.$$

Q 2. Si $x \in]-1,1[$ alors $-x \in]-1,1[$ et d'après la question (**Q 1**) avec $\alpha = -\frac{1}{2}$, on a les égalités suivantes.

$$\frac{1}{\sqrt{1-x}} = (1-x)^{-1/2} = 1 + \sum_{n=1}^{+\infty} \left(-\frac{1}{2}\right) \left(-\frac{3}{2}\right) \cdots \left(-\frac{1+2n-2}{2}\right) \frac{(-x)^n}{n!}$$

$$= 1 + \sum_{n=1}^{+\infty} \frac{(-1)^n}{2^n} 1 \times 3 \times \cdots \times (2n-1) \frac{(-x)^n}{n!}$$

$$= 1 + \sum_{n=1}^{+\infty} \frac{1}{2^n} \frac{(2n)!}{2 \times 4 \times \cdots \times (2n)} \frac{x^n}{n!}$$

$$= 1 + \sum_{n=1}^{+\infty} \frac{1}{2^n} \frac{(2n)!}{2^n n!} \frac{x^n}{n!} = 1 + \sum_{n=1}^{+\infty} \frac{1}{2^{2n}} {2n \choose n} x^n$$

$$= \sum_{n=0}^{+\infty} \frac{1}{2^{2n}} {2n \choose n} x^n$$

II.

Q 3. Tout d'abord
$$X_t(\Omega) = \{-1, 1\}$$
 donc $\left(\frac{X_t + 1}{2}\right)(\Omega) = \{0, 1\}$ et :

$$P\left(\frac{X_t+1}{2}=1\right) = P(X_t=1) = p$$
 et $P\left(\frac{X_t+1}{2}=0\right) = P(X_t=-1) = 1-p$.

Donc
$$X_t + 1 \sim \mathcal{B}(p)$$
.

Les variables aléatoires X_1, \ldots, X_n sont indépendantes donc par le lemme des coalitions, les variables aléatoires $\frac{X_1+1}{2}, \ldots, \frac{X_n+1}{2}$ sont aussi indépendantes. Comme elles suivent toutes une même loi de Bernoulli de paramètre p, leur somme $Y_n = \sum_{i=1}^n \frac{X_i+1}{2}$ suit une loi binomiale de paramètres n et p.

$$Y_n(\Omega) = \llbracket 0, n \rrbracket$$
 et $\forall k \in \llbracket 0, n \rrbracket$ $P(Y_n = k) = \binom{n}{k} p^k (1-p)^{n-k}$.

Q 4. Avec les notations de l'énoncé, on a
$$Y_n = \sum_{t=1}^n \frac{X_t + 1}{2} = \frac{1}{2}(S_n + n)$$
.

Et donc l'événement $(S_n = 0)$ est aussi l'évenement $(Y_n = \frac{n}{2})$.

Comme $Y_n(\Omega) = [0, n]$, si n est impair, $P(S_n = 0) = 0$.

Si *n* est pair, alors
$$P(S_n = 0) = P\left(Y_n = \frac{n}{2}\right) = \binom{n}{n/2} p^{n/2} (1-p)^{n-n/2}$$
.

On a bien
$$u_n = P(S_n = 0) = \begin{cases} \binom{n}{n/2} (p(1-p))^{n/2} & \text{si } n \text{ est pair} \\ 0 & \text{sinon} \end{cases}$$

Q 5. On a
$$u_{2n} = \binom{2n}{n} (p(1-p))^n$$
.

On voudrait utiliser le résultat de (**Q 2**) avec $\frac{x^n}{2^{2n}} = (p(1-p))^n$, c'est-à-dire avec x = 4p(1-p). Or l'application $x \in [0,1] \longmapsto x(1-x)$ prend ses valeurs dans [0,1/4] et atteint son maximum $\frac{1}{4}$ uniquement en $x = \frac{1}{2}$. On distingue deux cas.

- deux cas. si $p \neq \frac{1}{2}$: alors $x = 4p(1-p) \in]0,1[$ et donc la série $\sum u_{2n} = \sum \frac{1}{2^{2n}} \binom{2n}{n} x^n$ converge. Par conséquent, son terme général tend vers 0.
- si $p = \frac{1}{2}$: par la formule de Stirling, on a:

$$u_{2n} = \frac{(2n)!}{2^{2n}(n!)^2} \underset{n \to +\infty}{\sim} \frac{\left(\frac{2n}{e}\right)^{2n}}{2^{2n}\left(\frac{n}{e}\right)^{2n}} \frac{\sqrt{4n\pi}}{2n\pi} = \frac{1}{\sqrt{n\pi}} \xrightarrow[n \to +\infty]{} 0.$$

Remarque: dans les deux cas, on a

$$u_{2n} \underset{n \to +\infty}{\sim} \frac{(4p(1-p))^n}{\sqrt{n\pi}} \xrightarrow[n \to +\infty]{} 0.$$

Dans tous les cas, on a bien démontré, $\lim_{n\to+\infty} u_{2n} = 0$.

Ce qui signifie que la probabilité de retour à l'origine au bout de 2n déplacements tend vers 0 quand n tend vers $+\infty$.

III.

 ${f Q}$ 6. T_n représente le nombre de passage à l'origine au cours de 2n déplacements.

Q 7.
$$O_{2j}(\Omega) = \{0,1\}$$
 avec $P(O_{2j} = 1) = P(S_{2j} = 0) = u_{2j}$ donc $O_{2j} \sim \mathcal{B}(u_{2j})$. Deplus, par linéarité de l'espérance, on a :

 $\mathbb{E}(T_n) = \mathbb{E}\left(\sum_{j=0}^n O_{2j}\right) = \sum_{j=0}^n \mathbb{E}(O_{2j}) = \sum_{j=0}^n u_{2j}$

4

On a donc bien $\mathbb{E}(T_n) = \sum_{j=0}^n \binom{2j}{j} (p(1-p))^j$.

Q 8. On suppose que $p \neq \frac{1}{2}$.

On a alors $4p(1-p) \in]0,1[$ et en appliquant le résultat de (**Q 2**) à x=4p(1-p), on obtient :

$$\frac{1}{\sqrt{1-4p(1-p)}} = \sum_{n=0}^{+\infty} \frac{1}{2^{2n}} \binom{2n}{n} (4p(1-p))^n = \sum_{n=0}^{+\infty} \binom{2n}{n} (p(1-p))^n$$

ce qui signifie par définition de série convergente que :

Si
$$p \neq \frac{1}{2}$$
 alors $\lim_{n \to +\infty} \mathbb{E}(T_n) = \lim_{n \to +\infty} \sum_{j=0}^n \binom{2j}{j} (p(1-p))^j = \frac{1}{\sqrt{1-4p(1-p)}}$.

- **Q 9.** On suppose que $p = \frac{1}{2}$. On montre le résultat attendu par récurrence sur $n \in \mathbb{N}$.

 Pour n = 0: $T_0 = O_0 = 1$ car à l'instant t = 0, la particule est à l'origine. Donc $\mathbb{E}(T_0) = \mathbb{E}(1) = 1$.

De plus, pour $n=0, \frac{2n+1}{2^{2n}}\binom{2n}{n}=1$, le résultat est donc vérifié pour n=0.

— Soit $n \in \mathbb{N}$. On suppose le résultat démontré pour ce n. On a $T_{n+1} = T_n + O_{2n+2}$.

Par linéarité de l'espérance et par hypothèse de récurrence :

$$\mathbb{E}(T_{n+1}) = \mathbb{E}(T_n) + \mathbb{E}(O_{2n+2}) = \frac{2n+1}{2^{2n}} \binom{2n}{n} + \frac{1}{2^{2n+2}} \binom{2n+2}{n+1}$$

$$= \frac{1}{2^{2n+2}} \binom{2n+2}{n+1} \left((2n+1)2^2 \frac{(n+1)^2}{(2n+2)(2n+1)} + 1 \right)$$

$$= \frac{1}{2^{2n+2}} \binom{2n+2}{n+1} \left(2(n+1) + 1 \right) = \frac{2n+3}{2^{2n+2}} \binom{2n+2}{n+1}$$

Finalement, par le principe de récurrence, on a démontré : $\forall n \in \mathbb{N}, \quad \mathbb{E}(T_n) = \frac{2n+1}{2^{2n}} \binom{2n}{n}$

$$\forall n \in \mathbb{N}, \quad \mathbb{E}(T_n) = \frac{2n+1}{2^{2n}} \binom{2n}{n}.$$

Méthode 1 : On utilise comme cela est suggéré le résultat précédent.

On a vu en (**Q** 5) que dans ce cas, $u_{2n} = \frac{1}{2^{2n}} \binom{2n}{n} \underset{n \to +\infty}{\sim} \frac{1}{\sqrt{n\pi}}$.

On a donc $\mathbb{E}(T_n) \underset{n \to +\infty}{\sim} \frac{2n}{\sqrt{n\pi}} \underset{n \to +\infty}{\longrightarrow} +\infty$ et alors $\boxed{\mathbb{E}(T_n) \underset{n \to +\infty}{\longrightarrow} +\infty}$.

Problème 3

- I.
- T est la matrice de u dans la base \mathscr{B} , sa première colonne donne l'image de $e_1: u(e_1) = \lambda_1 e_1$. Par une récurrence immédiate, on montrerait que pour tout $k \in \mathbb{N}$, $u^k(e_1) = \lambda_1^k e_1$. Et puisque $|\lambda_1| < 1$, on a :

$$||u^k(e_1)|| = ||\lambda_1^k e_1|| = |\lambda_1|^k ||e_1|| \underset{k \to +\infty}{\longrightarrow} 0.$$

Et de manière immédiate $\lim_{k \to +\infty} u^k(e_1) = 0$.

 ${\bf Q}$ 2. La i+1-ème colonne de T donne l'image de e_{i+1} par u. Plus précisément :

$$u(e_{i+1}) = \underbrace{T_{1,i+1}e_1 + \dots + T_{i,i+1}e_i}_{-x} + \lambda_{i+1}e_{i+1}.$$

On a bien trouvé $x \in \text{Vect}\{e_1, \dots, e_i\}$ tel que $| u(e_{i+1}) = \lambda_{i+1}e_{i+1} + x$.

On pourrait démontrer le résultat demandé par récurrence. On choisit ici de faire apparaître une série télescopique.

— si $\lambda_{i+1} \neq 0$: on a $u(e_{i+1}) = \lambda_{i+1}e_{i+1} + x$ et comme u^m est linéaire :

$$\forall m \in \mathbb{N}, \ u^{m+1}(e_{i+1}) - \lambda_{i+1}u^m(e_{i+1}) = u^m(x).$$

On divise par $\lambda_{i+1}^{m+1} \neq 0$: $\frac{u^{m+1}(e_{i+1})}{\lambda_{i+1}^{m+1}} - \frac{u^m(e_{i+1})}{\lambda_{i+1}^m} = \frac{u^m(x)}{\lambda_{i+1}^{m+1}}$. On ajoute ces égalités pour $m = 0, \dots, k-1$. La somme est télescopique, il reste :

$$\frac{u^k(e_{i+1})}{\lambda_{i+1}^k} - \frac{u^0(e_{i+1})}{\lambda_{i+1}^0} = \sum_{m=0}^{k-1} \lambda_{i+1}^{-m-1} u^m(x).$$

En multipliant par λ_{i+1}^k , on obtient le résultat demandé.

— si $\lambda_{i+1} = 0$: alors d'une part, $u(e_{i+1}) = \lambda_{i+1}e_{i+1} + x = x$ donc $u^k(e_{i+1}) = u^{k-1}(x)$.

Et d'autre part, dans la somme suivante, tous les termes sont nuls sauf un, celui pour m = k - 1:

$$\sum_{m=0}^{k-1} \lambda_{i+1}^{k-m-1} u^m(x) = u^{k-1}(x) = u^k(e_{i+1}).$$

Dans les deux cas, on a bien démontré que $\forall k \in \mathbb{N}^*, \ u^k(e_{i+1}) = \sum_{m=0}^{k-1} \lambda_{i+1}^{k-m-1} u^m(x).$

Q 3. On a $x \in \text{Vect}\{e_1, \dots, e_i\}$ donc il existe des complexes x_1, \dots, x_i tels que $x = \sum_{i=1}^i x_i e_i$.

Par linéarité de u, $u^k(x) = \sum_{j=1}^i x_i u^k(e_i)$. On on a supposé que pour tout $j \in [1, i]$, $\lim_{k \to +\infty} u^k(e_i) = O$.

Par opérations sur les limites, on a donc aussi :

$$\lim_{k \to +\infty} u^k(x) = O.$$

Une première conséquence est que la suite $(u^k(x))_{k\in\mathbb{N}}$ est bornée : $\exists M>0, \ \forall k\in\mathbb{N}, \ \|u^k(x)\|\leqslant M$.

On montre le résultat demandé en revenant à la définion de limite.

Soit $\varepsilon > 0$ fixé : on a les majorations suivantes (inégalité triangulaire).

$$\left\| \sum_{m=0}^{k-1} \lambda_{i+1}^{k-m-1} u^m(x) \right\| \le \sum_{m=0}^{k-1} |\lambda_{i+1}|^{k-m-1} \|u^m(x)\|.$$

Or, $\lim_{m \to +\infty} u^m(x) = 0$ donc, il existe un rang $N \in \mathbb{N}$ tel que :

$$\forall k \geqslant N, \|u^m(x)\| \leqslant \varepsilon.$$

Pour k > N, on coupe la somme en 2. On sait que $|\lambda_{i+1}| < 1$ donc la série $\sum_{n \in \mathbb{N}} |\lambda_{i+1}|^n$ converge et a pour somme

$$\frac{1}{1-|\lambda_{i+1}|}.$$

$$\begin{split} \sum_{m=0}^{k-1} |\lambda_{i+1}|^{k-m-1} \|u^m(x)\| &= \sum_{m=0}^{N-1} |\lambda_{i+1}|^{k-m-1} \underbrace{\|u^m(x)\|}_{\leqslant M} + \sum_{m=N}^{k-1} |\lambda_{i+1}|^{k-m-1} \underbrace{\|u^m(x)\|}_{\leqslant \varepsilon} \\ &\leqslant M \sum_{m=0}^{N-1} |\lambda_{i+1}|^{k-m-1} + \varepsilon \sum_{m=N}^{k-1} |\lambda_{i+1}|^{k-m-1} \\ &\leqslant M \sum_{n=k-N}^{+\infty} |\lambda_{i+1}|^n + \varepsilon \sum_{n=0}^{+\infty} |\lambda_{i+1}|^n \\ &\leqslant \frac{M}{1 - |\lambda_{i+1}|} |\lambda_{i+1}|^{k-N} + \varepsilon \frac{1}{1 - |\lambda_{i+1}|} \end{split}$$

Or $\lim_{k\to +\infty} |\lambda_{i+1}|^{k-N} = 0$ donc il existe $N' \geqslant N$ tel que pour tout $k \geqslant N'$, on ait $|\lambda_{i+1}|^{k-N} \leqslant \varepsilon$.

En reportant dans la majoration précédente, on a trouvé N' tel que pour tout entier $k \geqslant N'$, on ait :

$$\left\| \sum_{m=0}^{k-1} \lambda_{i+1}^{k-m-1} u^m(x) \right\| \leqslant \sum_{m=0}^{k-1} |\lambda_{i+1}|^{k-m-1} \|u^m(x)\| \leqslant \varepsilon \frac{M+1}{1-|\lambda_{i+1}|} = C\varepsilon.$$

Quitte à reprendre le raisonnement avec $\varepsilon' = \frac{\varepsilon}{C}$, on a bien démontré que :

$$\left\| \lim_{k \to +\infty} \left\| \sum_{m=0}^{k-1} \lambda_{i+1}^{k-m-1} u^m(x) \right\| = 0.$$

On a alors, en utilisant (**Q** 2) et $|\lambda_{i+1}| < 1$:

$$||u^{k}(e_{i+1})|| = \left|\left|\sum_{m=0}^{k-1} \lambda_{i+1}^{k-m-1} u^{m}(x)\right|\right| \leq |\lambda_{i+1}|^{k} ||e_{i+1}|| + \left|\left|\sum_{m=0}^{k-1} \lambda_{i+1}^{k-m-1} u^{m}(x)\right|\right| \underset{k \to +\infty}{\longrightarrow} 0,$$

et par le théorème d'encadrement $\lim_{k\to +\infty} u^k(e_{i+1}) = 0.$

Q 4. Pour $i \in \{1, ..., n\}$ on note \mathscr{P}_i la propriété : $\lim_{k \to +\infty} u^k(e_i) = 0$.

En question (Q 1), on a montré que \mathscr{P}_1 est vraie. Dans les deux questions suivantes, on a montré que, pour tout $i \in \{1, \ldots, n-1\}$ si $\mathscr{P}_1, \ldots, \mathscr{P}_i$ sont vraies, alors \mathscr{P}_{i+1} est vraie.

Par le principe de **récurrence forte**, \mathscr{P}_i est vraie pour tout $i \in \{1, ..., n\}$.

On note come dans l'énoncé, $T_{i,j}^{(k)}$ les coefficients de T^k . Puisque T^k est la matrice de u^k dans la base \mathscr{B} , on a :

$$\forall j \in \{1, \dots, n\}, \ u^k(e_j) = \sum_{i=1}^n T_{i,j}^{(k)} e_i$$

Et comme $\lim_{k\to +\infty} u^k(e_i) = 0$, ses suites coordonnées dans la base \mathscr{B} tendent aussi vers 0.

Et finalement :

$$\forall (i,j) \in \{1,\ldots,n\}^2, \quad \lim_{k \to +\infty} T_{i,j}^{(k)} = 0.$$

Et par conséquent, $\lim_{k \to +\infty} T^k = 0$.

Q 5. On suppose juste que $A \in \mathcal{M}_n(\mathbb{C})$ et que : $\forall \lambda \in \operatorname{Sp}(A), |\lambda| < 1$.

On note $\lambda_1, \ldots, \lambda_n$ les valeurs propres de A répétées avec multiplicité. Puisque $\mathbb{K} = \mathbb{C}$, le polynôme caractérisque de A est scindé et donc A est trigonalisable. Plus précisement, il existe une matrice tringulaire supérieure T dont les coefficients diagonaux sont $\lambda_1, \ldots, \lambda_n$, et une matrice inversible P telles que :

$$A = PTP^{-1}.$$

D'après les questions précédentes, on a $\lim_{k\to +\infty} T^k = 0$.

De plus, $A^k = (PTP^{-1})^k = PTP^{-1}.PTP^{-1}...PTP^{-1} = PT^kP^{-1}.$

Enfin, l'application $\varphi: M \longmapsto PMP^{-1}$ est linéaire sur $\mathscr{M}_n(\mathbb{C})$, comme $\mathscr{M}_n(\mathbb{C})$ est de dimension finie, elle est continue, en particulier continue en 0. Puisque $\lim_{k \to +\infty} T^k = 0$, on a donc :

$$\lim_{k \to +\infty} \varphi(T^k) = \varphi(0) = 0.$$

Ce qui s'écrit $\lim_{k\to +\infty} A^k = 0$.

II.

Q 6. A n'est pas inversible, donc 0 est valeur propre de A: il existe donc une matrice colonne $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \neq 0$ telle que AX = 0.

Q 7. Pour tout $j \in [1; n]$, $|x_j| \le |x_{i_0}|$ donc si $x_{i_0} = 0$, on a alors pour tout j, $x_j = 0$, ce qui contredit le fait que $X \ne 0$ Comme AX = 0, alors en considérant la i_0 -ème ligne du produit AX, on a $\sum_{j=1}^n a_{i_0,j}x_j = 0$ donc en isolant le i_0 -ème

terme :
$$a_{i_0,i_0}x_{i_0} = -\sum_{j \neq i_0} a_{i_0,j}x_j$$

puis par inégalité triangulaire, $|a_{i_0,i_0}x_{i_0}| \leq \sum_{\substack{j=1\\j\neq i_0}}^n |a_{i_0,j}|.|x_j| \leq \sum_{\substack{j=1\\j\neq i_0}}^n |a_{i_0,j}|.|x_{i_0}|.$

Q 8. Comme $|x_{i_0}| > 0$, on en déduit l'inégalité $|a_{i_0,i_0}| \leqslant \sum_{\substack{j=1 \ j \neq i_0}}^n |a_{i_0,j}|$, ce qui contredit l'hypothèse de dominance stricte de la diagonale de A.

III.

Q 9. Remarquons tout d'abord que puisque A est une matrice à diagonale strictement dominante et puisqu'un module est un réel positif ou nul, on a, grâce à l'inégalité stricte : $\forall i \in [1, n], |a_{ii}| > 0$.

M est une matrice triangulaire inférieure donc

$$|\det(M)| = \prod_{i=1}^{n} |m_{ii}| = \prod_{i=1}^{n} |a_{ii}| > 0$$

Ainsi $det(M) \neq 0$ et M est inversible.

Q 10. Avec les notations de l'énoncé :

$$BX + M^{-1}Y = M^{-1}FX + M^{-1}AX = M^{-1}(F+A)X = M^{-1}MX = X$$

Q 11. Par définition de λ et V, $V \neq 0$ et $BV = \lambda V$.

Donc $M^{-1}FV = \lambda V$ et en multipliant par M à gauche, $FV = \lambda MV$.

On pose
$$V = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$
.

En utilisant les définitions de M et F et la convention de l'énoncé, l'égalité vectorielle précédente se traduit alors par

$$\forall i \in \llbracket 1, n \rrbracket, \quad -\sum_{j=i+1}^{n} a_{ij} v_j = \lambda \left(\sum_{j=1}^{i} a_{ij} v_j \right)$$

En isolant le terme a_{ii} , on obtient donc

$$\lambda a_{ii}v_i = -\left(\sum_{j=i+1}^n a_{ij}v_j + \lambda \sum_{j=1}^{i-1} a_{ij}v_j\right)$$

 $\{|v_j|\ /\ j\in \llbracket 1,n\rrbracket \}$ est un ensemble fini de réels donc admet un maximum $|v_{i_0}|$. Comme V est un vecteur non nul, il existe $j\in \llbracket 1,n\rrbracket$ tel que $v_j\neq 0$ et donc $|v_{i_0}|\geqslant |v_j|>0$. Ainsi $v_{i_0}\neq 0$.

En particulier, pour $i=i_0$ et après application de l'inégalité triangulaire :

$$|\lambda a_{i_0 i_0} v_{i_0}| \le \left| \sum_{j=i_0+1}^n a_{i_0 j} v_j \right| + |\lambda| \left| \sum_{j=1}^{i_0-1} a_{i_0 j} v_j \right|$$

$$|\lambda a_{i_0 i_0}| |v_{i_0}| \le \sum_{j=i_0+1}^n |a_{i_0 j}| |v_j| + |\lambda| \sum_{j=1}^{i_0-1} |a_{i_0 j}| |v_j|$$

 $|v_{i_0}| > 0$ donc

$$|\lambda a_{i_0 i_0}| \leqslant \sum_{j=i_0+1}^n |a_{i_0 j}| \frac{|v_j|}{|v_{i_0}|} + |\lambda| \sum_{j=1}^{i_0-1} |a_{i_0 j}| \frac{|v_j|}{|v_{i_0}|}$$

Par définition de i_0 , $\forall j \in [1, n]$, $\frac{|v_j|}{|v_{i_0}|} \leq 1$ et on manipule des termes positifs donc

$$|\lambda a_{i_0 i_0}| \le \sum_{j=i_0+1}^n |a_{i_0 j}| + |\lambda| \sum_{j=1}^{i_0-1} |a_{i_0 j}|$$

Si $\lambda = 0$, on a bien $|\lambda| < 1$.

Sinon, A étant une matrice à diagonale strictement dominante, on a :

$$|\lambda| |a_{i_0 i_0}| > |\lambda| \sum_{j \neq i_0} |a_{i_0 j}| = |\lambda| \sum_{j=1}^{i_0 - 1} |a_{i_0 j}| + |\lambda| \sum_{j=i_0 + 1}^{n} |a_{i_0 j}|$$

On en déduit

$$\sum_{j=i_0+1}^{n} |a_{i_0j}| > |\lambda| \sum_{j=i_0+1}^{n} |a_{i_0j}|$$

Et $\sum_{j=i_0+1}^n |a_{i_0j}| > 0$ car sinon, on aurait 0 > 0 donc en simplifiant, on obtient

$$|\lambda| < 1$$

Q 12. Les valeurs propres de B sont donc toutes de module strictement inférieur à 1. Par conséquent la **partie II** permet de conclure que

$$\lim_{k \to +\infty} B^k = 0.$$

Q 13. Montrons le résultat par récurrence. On note pour $k \in \mathbb{N}$, $\mathscr{H}_k : X_k - X = B^k(X_0 - X)$.

- \mathcal{H}_0 est clairement vraie.
- Si \mathscr{H}_k vraie, alors :

par définition de la suite et par Q31., on a :

$$X_{k+1} - X = (BX_k + M^{-1}Y) - (BX + M^{-1}Y) = B(X_k - X)$$

Donc par HR_k , $X_{k+1} - X = B^{k+1}(X_0 - X)$ et \mathcal{H}_{k+1} est vraie.

Conclusion : On a montré par récurrence que

$$\forall k \in \mathbb{N}, \quad X_k - X = B^k(X_0 - X)$$

De plus, $\mathscr{M}_n(\mathbb{C})$ est de dimension finie et l'application $\psi: M \in \mathscr{M}_n(\mathbb{C}) \longmapsto M(X_0 - X)$ est linéaire donc elle est continue (en 0). Comme $\lim_{k \to +\infty} B^k = 0$, on en déduit que $\lim_{k \to +\infty} \psi(B^k) = \psi(0) = 0$. Ainsi :

$$\lim_{k \to +\infty} (X^k - X) = 0.$$

La suite $(X_k)_{k\in\mathbb{N}}$ converge donc bien vers X.