Problème 1 - D'après Centrale MPI 2023

Notations

- Dans tout le sujet, n désigne un entier naturel non nul.
- Étant donnés deux entiers naturels a et b, on note [a,b] l'ensemble des entiers naturels k tels que $a \le k \le b$.
- Pour deux suites de nombres réels $(u_m)_{m\in\mathbb{N}}$ et $(v_m)_{m\in\mathbb{N}}$, la notation $u_m=O(v_m)$ signifie qu'il existe une suite bornée $(M_m)_{m\in\mathbb{N}}$ telle que l'on ait

$$\exists m_0 \in \mathbb{N} \quad | \quad \forall m \geqslant m_0, \quad u_m = M_m v_m$$

— On pourra utiliser sans démonstration la formule suivante, qui précise la formule de Stirling lorsque n tend vers $+\infty$:

$$n! = \left(\frac{n}{e}\right)^n \sqrt{2\pi n} \left(1 + O\left(\frac{1}{n}\right)\right)$$

— Toutes les variables aléatoires considérées sont discrètes et sont définies sur un espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$.

I. Résultats préliminaires

I.A - Calcul d'une intégrale classique

Rappelons que n désigne un entier naturel non nul. On note

$$I_n = \int_0^1 \frac{1}{(1+t^2)^n} dt$$
 et $K_n = \int_0^{+\infty} \frac{1}{(1+t^2)^n} dt$.

 ${f Q}$ 1. Montrer que

$$I_n \geqslant \frac{1}{2^n}$$

- **Q 2.** Justifier l'existence de K_n et donner la valeur exacte de K_1 .
- **Q** 3. Montrer que

$$\int_{1}^{+\infty} \frac{1}{\left(1+t^{2}\right)^{n}} \, \mathrm{d}t = O\left(\frac{1}{n2^{n}}\right)$$

On pourra minorer $1 + t^2$ par un polynôme de degré 1.

Q 4. En déduire que, lorsque n tend vers $+\infty$,

$$I_n \sim K_n$$

- **Q 5.** Établir la relation de récurrence $K_n = K_{n+1} + \frac{1}{2n}K_n$.
- **Q 6.** En déduire un équivalent simple de I_n lorsque n tend vers $+\infty$.
- Q 7. Justifier que

$$\sqrt{n}I_n = \int_0^{\sqrt{n}} \frac{1}{\left(1 + u^2/n\right)^n} \, \mathrm{d}u$$

Q 8. Montrer que

$$\lim_{n\to\infty} \sqrt{n} I_n = \int_0^{+\infty} e^{-u^2} du$$

Q 9. En déduire les valeurs de

$$\int_0^{+\infty} e^{-u^2} du \quad \text{puis de} \quad \int_{-\infty}^{+\infty} e^{-u^2/2} du$$

Dans toute la suite, on posera pour tout x réel

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$
 et $\Phi(x) = \int_{-\infty}^{x} \varphi(t) dt$.

I.B - Comportement asymptotique de $1-\Phi$

Soit x > 0.

Q 10. En écrivant que $\varphi(t) \leqslant \frac{t}{x} \varphi(t)$ pour tout $t \geqslant x$, montrer que

$$\int_{x}^{+\infty} \varphi(t) \, \mathrm{d}t \leqslant \frac{\varphi(x)}{x}.$$

Q 11. À l'aide de l'étude d'une fonction bien choisie, montrer que

$$\frac{x}{x^2 + 1}\varphi(x) \leqslant \int_{x}^{+\infty} \varphi(t) \, \mathrm{d}t$$

Q 12. En déduire un équivalent simple de $1 - \Phi(x)$ lorsque x tend vers $+\infty$.

I.C - Une inégalité maximale

Dans cette sous-partie, n est un entier naturel non nul et Z_1, \ldots, Z_n sont des variables aléatoires discrètes indépendantes.

Pour tout $p \in [1, n]$, on note $R_p = \sum_{i=1}^p Z_i$.

On va montrer la propriété

$$\forall x>0 \quad \mathbb{P}\left(\left\{\max_{1\leqslant p\leqslant n}|R_p|\geqslant 3x\right\}\right)\leqslant 3\max_{1\leqslant p\leqslant n}\mathbb{P}\left(\left\{|R_p|\geqslant x\right\}\right)$$

On admet que les différentes fonctions intervenant dans cette inégalité sont bien des variables aléatoires discrètes. Pour simplifier, notons A l'événement $\left\{\max_{1\leqslant p\leqslant n}|R_p|\geqslant 3x\right\}$. Ainsi,

$$A = \left\{ \omega \in \Omega / \max_{1 \le p \le n} |R_p(\omega)| \ge 3x \right\}.$$

Dans le cas où $n \ge 2$, définissons de plus les événements

$$A_1 = \{|R_1| \geqslant 3x\} \quad \text{ et } \quad A_p = \left\{ \max_{1 \leqslant i \leqslant p-1} |R_i| < 3x \right\} \cap \{|R_p| \geqslant 3x\}$$

pour $p \in [2, n]$.

Q 13. Exprimer l'événement A à l'aide des événements A_1, A_2, \ldots, A_n .

Q 14. Montrer que l'on a

$$\mathbb{P}(A) \leqslant \mathbb{P}\left(\{|R_n| \geqslant x\}\right) + \sum_{n=1}^n \mathbb{P}\left(A_p \cap \{|R_n| < x\}\right).$$

Q 15. Justifier que pour tout $p \in [1, n]$, on a l'inclusion

$$A_p \cap \{|R_n| < x\} \subset A_p \cap \{|R_n - R_p| > 2x\}.$$

Q 16. En déduire que

$$\mathbb{P}(A) \leqslant \mathbb{P}\left(\{|R_n| \geqslant x\}\right) + \max_{1 \leqslant p \leqslant n} \mathbb{P}\left(\{|R_n - R_p| > 2x\}\right).$$

Q 17. Conclure.

II. Applications

Pour tout $n \in \mathbb{N}^*$ et tout $k \in [0, n]$, on pose

$$x_{n,k} = -\sqrt{n} + \frac{2k}{\sqrt{n}}$$

De plus, on définit la fonction $B_n : \mathbb{R} \to \mathbb{R}$ par les conditions

$$\forall x \in \left] -\infty, -\sqrt{n} - \frac{1}{\sqrt{n}} \right[\qquad B_n(x) = 0$$

$$\forall k \in [0, n] \quad \forall x \in \left[x_{n,k} - \frac{1}{\sqrt{n}}, x_{n,k} + \frac{1}{\sqrt{n}} \right] \quad B_n(x) = \frac{\sqrt{n}}{2} \binom{n}{k} \frac{1}{2^n}$$

$$\forall x \in \left[\sqrt{n} + \frac{1}{\sqrt{n}}, +\infty \right[\qquad B_n(x) = 0$$

On admet (c'était l'objet d'une partie du problème initial) que la suite de fonctions $(B_n)_{n\in\mathbb{N}^*}$ converge uniformément sur \mathbb{R} vers la fonction φ , définie dans la partie I. Autrement dit,

$$\lim_{n \to +\infty} \Delta_n = 0 \quad \text{avec} \quad \Delta_n = \sup_{x \in \mathbb{R}} |B_n(x) - \varphi(x)|.$$

Soit X une variable aléatoire discrète telle que $\mathbb{P}(X=-1)=1/2$ et $\mathbb{P}(X=1)=1/2$. On considère une suite $(X_i)_{i\in\mathbb{N}^*}$ de variables aléatoires discrètes mutuellement indépendantes et de même loi que X. On définit alors

$$S_0 = 0$$
 et $\forall n \in \mathbb{N}^*$ $S_n = \sum_{i=1}^n X_i$.

On dit que $(S_n)_{n\in\mathbb{N}}$ est une marche aléatoire symétrique sur \mathbb{Z} .

II.A - Théorème central limite

Soit I un intervalle de \mathbb{R} et $(f_n)_{n\in\mathbb{N}^*}$ une suite de fonctions continues par morceaux sur I qui converge uniformément sur I vers une fonction f également continue par morceaux sur I.

Q 18. Si $(u_n)_{n\in\mathbb{N}^*}$ (respectivement $(v_n)_{n\in\mathbb{N}^*}$) est une suite de nombres réels appartenant à I qui converge vers $u\in I$ (respectivement $v\in I$), montrer que

$$\lim_{n \to +\infty} \left(\int_{u_n}^{v_n} f_n(x) \, \mathrm{d}x \right) = \int_u^v f(x) \, \mathrm{d}x.$$

On pose, pour tout $i \in \mathbb{N}^*$, $Y_i = \frac{X_i + 1}{2}$ et $T_n = \sum_{i=1}^n Y_i$.

Q 19. Montrer que, pour tout $j \in [0, n]$,

$$\mathbb{P}(\{T_n = j\}) = \int_{x_{n,j} - 1/\sqrt{n}}^{x_{n,j} + 1/\sqrt{n}} B_n(x) dx$$

où $x_{n,j}$ a été défini précédemment.

Considérons un couple (u, v) de réels tel que u < v, et notons

$$J_n = \left\{ j \in [0, n] \mid \frac{n + u\sqrt{n}}{2} \leqslant j \leqslant \frac{n + v\sqrt{n}}{2} \right\}.$$

Q 20. Justifier que

$$\mathbb{P}\left(\left\{u \leqslant \frac{S_n}{\sqrt{n}} \leqslant v\right\}\right) = \sum_{j \in J_n} \mathbb{P}\left(\left\{T_n = j\right\}\right).$$

Q 21. En déduire que l'on a

$$\lim_{n \to +\infty} \mathbb{P}\left(\left\{u \leqslant \frac{S_n}{\sqrt{n}} \leqslant v\right\}\right) = \int_u^v \varphi(x) \, \mathrm{d}x$$

puis que

$$\lim_{n \to +\infty} \mathbb{P}\left(\left\{u \leqslant \frac{S_n}{\sqrt{n}}\right\}\right) = 1 - \Phi(u)$$

où les applications φ et Φ ont été définies dans la partie I.

II.B - Critère de tension

Dans cette dernière sous-partie, on fixe $\varepsilon \in [0,1[$.

Q 22. Montrer qu'il existe $x_0 \ge 1$ tel que l'on ait

$$\forall x \geqslant x_0 \quad \exists n_x \in \mathbb{N} \quad \forall n \geqslant n_x \quad x^2 \, \mathbb{P}\left(\left\{|S_n| \geqslant x\sqrt{n}\right\}\right) \leqslant \varepsilon.$$

Q 23. Pour x_0 et x comme à la question précédente, on fixe $N \geqslant \frac{n_x}{\varepsilon}$ et on choisit $n \geqslant N$. Montrer qu'alors

$$x^2 \mathbb{P}\left(\left\{\max_{1 \leqslant p \leqslant n} |S_p| \geqslant 3x\sqrt{n}\right\}\right) \leqslant 3\varepsilon.$$

Problème 2

Pour $a \in \mathbb{R}$, on pose E_a l'équation $\ln(x) = ax$ d'inconnue x > 0.

Q 1. Montrer que l'équation E_a admet au moins une solution si et seulement si $a \leqslant \frac{1}{a}$.

Dans toute la suite, on suppose que cette condition est réalisée et on note s_a la plus petite des solutions de l'équation E_a .

- **Q 2.** Soit φ une fonction de classe C^1 sur \mathbb{R} telle que pour tout $(x,y) \in \mathbb{R}^2$, $\varphi(x+y) = \varphi(x)\varphi(y)$ (condition C). On pose $\lambda = \varphi'(0).$
 - a) Montrer que si φ s'annule, alors elle est constamment nulle. Dans le cas contraire, que vaut $\varphi(0)$?
 - b) Montrer que pour tout $(x, y) \in \mathbb{R}^2$, $\varphi'(x) = \lambda \varphi(x)$.
 - c) Déterminer toutes les fonctions φ non nulles qui satisfont la condition C.
- **Q 3.** On définit la suite de polynômes (P_n) par $P_0 = 1$ et pour tout $n \in \mathbb{N}^*$, $P_n = \frac{1}{n!}X(X+n)^{n-1}$.
 - a) Montrer que pour tout $n \in \mathbb{N}^*$, $P'_n = P_{n-1}(X+1)$.
 - b) Montrer que pour tout $n \in \mathbb{N}$, pour tout $(x,y) \in \mathbb{R}^2$, $P_n(x+y) = \sum_{k=0}^n P_k(x) P_{n-k}(y)$.
- **Q 4.** Soit $a \in \left[-\frac{1}{e}, \frac{1}{e}\right]$. On pose $F_a : x \mapsto \sum_{a=0}^{+\infty} P_n(x)a^n$.
 - a) Montrer que pour a et $x \in \mathbb{R}$ fixés, la série $\sum_{n \geq 0} P_n(x) a^n$ converge absolument. La fonction F_a est donc bien définie sur \mathbb{R} .
 - b) Montrer que F_a est de classe C^1 sur \mathbb{R} et vérifier que pour tout $x \in \mathbb{R}$, $F'_a(x) = aF_a(x+1)$. c) Montrer que pour tout $(x,y) \in \mathbb{R}^2$, $F_a(x+y) = F_a(x)F_a(y)$.

 - d) Montrer que $F_a(1)$ est solution de l'équation E_a : on pourra calculer $F_a'(0)$ de deux façons.
- **Q 5.** Pour $a \in \left[-\frac{1}{e}, \frac{1}{e}\right]$, on pose $G(a) = F_a(1)$.
 - a) Montrer que G est de classe C^1 sur $\left[-\frac{1}{e}, \frac{1}{e}\right]$ et monotone sur $\left[0, \frac{1}{e}\right]$.
 - b) Montrer que $F_a(1) = s_a$.
- **Q 6.** Soit c un réel tel que $1 < c < e^{1/e}$. Montrer que l'équation $y^y = c$ d'inconnue y > 0 a une unique solution y_0 et justifier l'égalité

4

$$y_0 = 1 + \ln(c) + \sum_{n=2}^{+\infty} (-1)^{n-1} \frac{(n-1)^{n-1}}{n!} (\ln c)^n$$

Problème 1

I.

I.A -

Q 1. Soit
$$t \in [0,1]$$
. On a $0 < 1 + t^2 \le 2$ donc $0 < \frac{1}{(1+t^2)^n} \le \frac{1}{2^n}$. Ainsi $I_n \ge \int_0^1 \frac{1}{2^n} dt = \frac{1}{2^n}$

Q 2. La fonction $t \mapsto \frac{1}{(1+t^2)^n}$ est continue sur $[0,+\infty[$.

Par ailleurs $\frac{1}{(1+t^2)^n} \underset{t\to +\infty}{\sim} \frac{1}{t^{2n}}$ et $t\mapsto \frac{1}{t^{2n}}$ est intégrable en $+\infty$ car 2n>1.

Ainsi $\int_0^{+\infty} \frac{1}{(1+t^2)^n} dt$ est absolument convergente donc convergente.

Ce qui justifie l'existence de
$$K_n$$
 et $K_1 = \int_0^{+\infty} \frac{1}{1+t^2} dt = \left[\arctan(t)\right]_{t=0}^{t\to +\infty} = \frac{\pi}{2}$

Q 3. On a $\forall t \ge 1$, $1 + t^2 \ge 1 + t > 0$.

Soit $n \geqslant 2$. Alors

$$\int_{1}^{+\infty} \frac{1}{(1+t^{2})^{n}} dt \leqslant \int_{1}^{+\infty} \frac{1}{(1+t)^{n}} dt = \int_{1}^{+\infty} (1+t)^{-n} dt = \left[\frac{(1+t)^{-n+1}}{-n+1} \right]_{t=1}^{t \to +\infty} = \frac{1}{(n-1)2^{n-1}} < +\infty$$

Or quand $n \to +\infty$, on a $\frac{1}{(n-1)2^{n-1}} \sim \frac{2}{n2^n} = O\left(\frac{1}{n2^n}\right)$

On a bien
$$\boxed{ \int_1^{+\infty} \frac{1}{(1+t^2)^n} \, \mathrm{d}t = O\left(\frac{1}{n2^n}\right) }$$

Q 4. À l'aide de la relation de Chasles et Q3, on a quand $n \longrightarrow +\infty$,

$$I_n - K_n = O\left(\frac{1}{n2^n}\right) = o\left(I_n\right)$$

$$\operatorname{car} \frac{1}{n2^{n}} = o\left(\frac{1}{2^{n}}\right) \text{ et } \frac{1}{2^{n}} = O\left(I_{n}\right) \text{ selon Q1}.$$

On en déduit que $I_n \sim K_n$

 ${f Q}$ 5. Sous réserve de validité, on effectue une intégration par parties :

$$K_n = \left[t \cdot \frac{1}{(1+t^2)^n}\right]_{t=0}^{t\to +\infty} + \int_0^{+\infty} t \cdot \frac{2nt}{(1+t^2)^{n+1}} dt = 2n \int_0^{+\infty} \frac{t^2+1}{(1+t^2)^{n+1}} dt - 2n \int_0^{+\infty} \frac{1}{(1+t^2)^{n+1}} dt$$

L'intégration par parties est valide car le bloc tout intégré est nul.

Ainsi
$$K_n = 2nK_n - 2nK_{n+1}$$
 ce qui permet de conclure que $K_n = K_{n+1} + \frac{1}{2n}K_n$

Q 6. Soit $n \in \mathbb{N}^*$. On d'après ce qui précède : $K_{n+1} = \frac{2n-1}{2n}K_n$.

Ainsi par récurrence immédiate, on a $K_n = \frac{\prod_{i=1} n - 1(2i-1)}{\prod_{i=1} n - 1(2i)} K_1 = \frac{\prod_{k=1} 2n - 2k}{\left(\prod_{i=1} n - 1(2i)\right)^2} \frac{\pi}{2}$. D'où

$$K_n = \frac{(2n-2)!}{(2^{n-1} \cdot (n-1)!)^2} \frac{\pi}{2} = \frac{(2n-2)!\pi}{2^{2n-1} ((n-1)!)^2}$$

En utilisant la formule de Stirling, quand $n \to +\infty$, on a

$$\frac{(2n-2)!}{\left((n-1)!\right)^2} \sim \frac{\left(\frac{2n-2}{e}\right)^{2n-2} \sqrt{2\pi(2n-2)}}{\left(\left(\frac{n-1}{e}\right)^{n-1} \sqrt{2\pi(n-1)}\right)^2} \sim \frac{2^{2n-2}}{\sqrt{\pi n}}$$

À l'aide de Q4, on peut conclure que $I_n \sim K_n \sim \frac{\sqrt{\pi}}{2\sqrt{n}}$

$$I_n \sim K_n \sim \frac{\sqrt{\pi}}{2\sqrt{n}}$$

Q 7. On effectue le changement de variable (bijectif, strictement monotone et C^1): $u = \sqrt{n}t$, pour obtenir: $\sqrt{n}I_n = \int_0^{\sqrt{n}} \frac{1}{(1+u^2)^n} dt$

$$: \sqrt{n}I_n = \int_0^{\sqrt{n}} \frac{1}{(1+u)^n} \frac{1}{$$

Q 8. Pour $n \in \mathbb{N}^*$, on considère la fonction $f_n : \begin{bmatrix} [0, +\infty[] \to \mathbb{R} \\ u \mapsto \begin{cases} \frac{1}{(1+u^2/n)^n} & \text{si } u \leqslant \sqrt{n} \\ 0 & \text{sinon} \end{cases}$.

On va utiliser le théorème de convergence dominée.

- (i) (hypothèse inintéressante) Pour tout $n \in \mathbb{N}^*$, f_n est continue par morceaux sur $[0, +\infty[$.
- (ii) (idem) La fonction $u \mapsto e^{-u^2}$ est continue sur $[0, +\infty[$.
- (iii) Soit u > 0. Quand $n \to +\infty$, on a $f_n(u) = \exp\left(-n\ln(1+u^2/n)\right)$ et $-n\ln(1+u^2/n) \sim -nu^2/n \longrightarrow -u^2/n$

Ainsi comme exp est continue, on a $f_n(u) \longrightarrow e^{-u^2}$ (valable pour u = 0)

Ainsi $(f_n)_n$ converge simplement vers $u \mapsto e^{-u^2}$ sur $[0, +\infty[$.

(iv) Soit $n \in \mathbb{N}^*$. Soit $u \in [0, \sqrt{n}]$, on a avec la formule du binôme :

$$(1 + u^2/n)^n = \sum_{k=0}^n \binom{n}{k} \frac{u^{2k}}{n^k} \geqslant \binom{n}{0} + \binom{n}{1} \frac{u^2}{n} = 1 + u^2 > 0$$

Ce qui permet d'établir l'hypothèse de domination : $\forall n \in \mathbb{N}^*, \ \forall u \in [0, +\infty[, |f_n(u)| \leq \frac{1}{1+u^2}]$

or la fonction $u \mapsto \frac{1}{1+u^2}$ est continue et intégrable sur $[0,+\infty[$. (Q2)

Avec (i), (ii), (iii) et (iv), le théorème s'applique : $\int_0^{+\infty} f_n \xrightarrow[n \to +\infty]{} \int_0^{+\infty} e^{-u^2} du.$

Avec Q7: $\left| \lim_{n \to +\infty} \sqrt{n} I_n = \int_0^{+\infty} e^{-u^2} du \right|$

Q 9. D'après Q6, on a $\sqrt{n} I_n \xrightarrow[n \to +\infty]{} \frac{\sqrt{\pi}}{2}$ Par unicité de la limite, on a donc $\int_0^{+\infty} e^{-u^2} du = \frac{\sqrt{\pi}}{2}$

Par parité, on a alors $\int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\pi}$. On effectue le changement de variable $u = \sqrt{2}t$.

Ainsi
$$\sqrt{\pi} = \frac{1}{\sqrt{2}} \int_{-\infty}^{+\infty} e^{-u^2/2} du$$
. D'où
$$\int_{-\infty}^{+\infty} e^{-u^2/2} du = \sqrt{2\pi}$$

I.B -

Q 10. On a $\varphi(t) \leqslant \frac{t}{x} \varphi(t)$ pour tout $t \geqslant x$ car x > 0 et $\varphi(t) \geqslant 0$. Ainsi

$$\int_x^{+\infty} \varphi(t) \, \mathrm{d}t \leqslant \frac{1}{x\sqrt{2\pi}} \int_x^{+\infty} t \mathrm{e}^{-t^2/2} \, \mathrm{d}t = \frac{1}{x\sqrt{2\pi}} \left[-\mathrm{e}^{-t^2/2} \right]_{t=x}^{t \to +\infty}$$

ce qui permet de conclure que $\int_{x}^{+\infty} \varphi(t) dt \leqslant \frac{\varphi(x)}{x}$

Q 11. Comme φ est de classe C^1 et intégrable sur $\mathbb R$ alors ψ est de classe C^1 sur $\mathbb R$ et pour $u \in \mathbb R$, on a :

$$\psi'(u) = 2u \int_{u}^{+\infty} \varphi(t) dt + (u^2 + 1) (-\varphi(u)) - \varphi(u) - u \left(\frac{-u}{\sqrt{2\pi}} e^{-u^2/2}\right) = 2 \left(u \int_{u}^{+\infty} \varphi(t) dt - \varphi(u)\right)$$

Ainsi $\forall u > 0, \ \psi'(u) = 2u \left(\int_{-\infty}^{+\infty} \varphi(t) \, dt - \frac{\varphi(u)}{u} \right) \leqslant 0 \text{ selon Q10.}$

Ainsi ψ est décroissante sur $[0, +\infty[$ car ψ y est continue. Le théorème de la limite monotone nous fournit $\ell=$

Par ailleurs on a $\forall x \ge 0$, $\psi(x) + x\varphi(x) \ge 0$ et par croissance comparée $x\varphi(x) \xrightarrow[x \to +\infty]{} 0$.

Ainsi pour $x \geqslant 0$, on a $\psi(x) \geqslant \ell \geqslant 0$, en particulier $\frac{\psi(x)}{x^2+1} \geqslant 0$ d'où $\frac{x}{x^2+1} \varphi(x) \leqslant \int_x^{+\infty} \varphi(t) dt$

Q 12. On a donc $\forall x > 0$, $\frac{x}{x^2 + 1} \varphi(x) \leqslant \int_{x}^{+\infty} \varphi(t) dt \leqslant \frac{1}{x} \varphi(x)$.

Or quand $x \to +\infty$, on a $\frac{x}{x^2+1} \sim \frac{1}{x}$. Ainsi par encadrement d'équivalents, on a

$$\int_{x}^{+\infty} \varphi(t) \, \mathrm{d}t \sim \frac{\varphi(x)}{x} = \frac{1}{x\sqrt{2\pi}} \mathrm{e}^{-x^{2}/2}$$

Or selon Q9 et Chasles, on a

$$1 = \int_{-\infty}^{+\infty} \varphi(t) dt = \Phi(x) + \int_{x}^{+\infty} \varphi(t) dt$$

D'où
$$1 - \Phi(x) = \int_{x}^{+\infty} \varphi(t) dt$$
. Ainsi quand $x \longrightarrow +\infty$, on a $1 - \Phi(x) \sim \frac{\varphi(x)}{x} \sim \frac{e^{-x^{2}/2}}{x\sqrt{2\pi}}$

Remarque : on aurait pu obtenir cet équivalent à l'aide d'une intégration par parties et en utilisant une intégration de relation comparaison (ici "petit o").

I.C -

Q 13.
$$A = \bigcup_{p=1}^{n} A_p \text{ (réunion disjointe)} \text{ (si } n = 1, \text{ alors } A = A_1 \text{)}.$$

Q 14. On a donc

$$A \subset (\{|R_n| \ge x\} \cup (A \cap \{|R_n| < x\})) = \left(\{|R_n| \ge x\} \cup \left(\bigcup_{p=1}^n A_p \cap \{|R_n| < x\}\right)\right)$$

La réunion étant disjointe, on a donc bien

$$\boxed{\mathbb{P}(A) \leqslant \mathbb{P}\left(\{|R_n| \geqslant x\}\right) + \sum_{p=1}^n \mathbb{P}\left(A_p \cap \{|R_n| < x\}\right)}$$

Q 15. Soit $p \in [1, n]$. Soit $\omega \in A_p \cap \{|R_n| < x\}$.

On a donc $|R_p(\omega)| \ge 3x$ et $|R_n(\omega)| < x$. Ainsi selon la deuxième inégalité triangulaire :

$$|R_n(\omega) - R_n(\omega)| \ge |R_n(\omega)| - |R_n(\omega)| > 3x - x = 2x$$

or $\omega \in A_p$ d'où $\omega \in A_p \cap \{|R_n - R_p| > 2x\}.$

On a bien l'inclusion $A_p \cap \{|R_n| < x\} \subset A_p \cap \{|R_n - R_p| > 2x\}$

Q 16. D'après Q14 et Q15, on a :

$$\mathbb{P}(A) \leqslant \mathbb{P}\left(\left\{|R_n| \geqslant x\right\}\right) + \sum_{n=1}^n \mathbb{P}\left(A_p \cap \left\{|R_n - R_p| > 2x\right\}\right)$$

Soit $p \in [1, p]$. On a

$$\{|R_n - R_p| > 2x\} = \left\{ \left| \sum_{j=p+1}^n Z_j \right| > 2x \right\}$$

Ainsi cet événement ne s'écrit qu'en fonction de Z_{p+1},\ldots,Z_n alors que A_p s'exprime à l'aide de Z_1,\ldots,Z_p

Donc le lemme des coalitions s'applique, on a l'indépendance des événements A_p et $\{|R_n - R_p| > 2x\}$

Ainsi

$$\mathbb{P}(A) \leqslant \mathbb{P}\left(\left\{|R_n| \geqslant x\right\}\right) + \sum_{p=1}^n \mathbb{P}\left(A_p\right) \cdot \mathbb{P}\left(\left\{|R_n - R_p| > 2x\right\}\right)$$

or en utilisant l'union disjointe de Q13, on a

$$\sum_{p=1}^{n} \mathbb{P}(A_p) \cdot \mathbb{P}\left(\left\{|R_n - R_p| > 2x\right\}\right) \leqslant \sum_{p=1}^{n} \mathbb{P}(A_p) \cdot \max_{1 \leqslant p \leqslant n} \mathbb{P}\left(\left\{|R_n - R_p| > 2x\right\}\right) \leqslant \mathbb{P}(A) \cdot \max_{1 \leqslant p \leqslant n} \mathbb{P}\left(\left\{|R_n - R_p| > 2x\right\}\right)$$

On en déduit que $\mathbb{P}(A) \leq \mathbb{P}(\{|R_n| \geq x\}) + \max_{1 \leq p \leq n} \mathbb{P}(\{|R_n - R_p| > 2x\})$

Q 17. Soit $k \in [1, n]$. On a $\forall a, b \in [-x, x], |a - b| \leq 2x$. Ainsi

$$\{|R_n - R_k| > 2x\} \subset (\{|R_n| > x\} \cup \{|R_k| > x\}) \subset (\{|R_n| \geqslant x\} \cup \{|R_k| \geqslant x\})$$

Ainsi
$$\mathbb{P}\left(\left\{|R_n - R_k| > 2x\right\}\right) \leqslant \mathbb{P}\left(\left\{|R_n| \geqslant x\right\}\right) + \mathbb{P}\left(\left\{|R_k| \geqslant x\right\}\right) \leqslant 2 \max_{1 \leqslant p \leqslant n} \mathbb{P}\left(\left\{|R_p| \geqslant x\right\}\right).$$

Ce qui avec Q16, permet d'obtenir le résultat attendu :

$$\left| \mathbb{P}\left(\left\{ \max_{1 \leqslant p \leqslant n} |R_p| \geqslant 3x \right\} \right) = \mathbb{P}(A) \leqslant \mathbb{P}\left(\left\{ |R_n| \geqslant x \right\} \right) + 2 \max_{1 \leqslant p \leqslant n} \mathbb{P}\left(\left\{ |R_p| \geqslant x \right\} \right) \leqslant 3 \max_{1 \leqslant p \leqslant n} \mathbb{P}\left(\left\{ |R_p| \geqslant x \right\} \right)$$

II.

II.A -

Q 18. Pour g fonction bornée sur I, je note $||g||_{\infty} = \sup_{x \in I} |g(x)|$.

Comme (f_n) converge uniformément sur I vers f, on dispose de $N_0 \in \mathbb{N}$ tel que pour tout $n \ge N_0$, $f - f_n$ est bornée sur I.

Soit $w \in I$. Soit $n \geqslant N_0$. On a

$$\left| \int_{w}^{v} f(x) \, \mathrm{d}x - \int_{w}^{v_n} f_n(x) \, \mathrm{d}x \right| \le \left| \int_{w}^{v} f - \int_{w}^{v_n} f + \int_{w}^{v_n} f - \int_{w}^{v_n} f_n \right| \le \left| \int_{v}^{v_n} f \right| + \left| \int_{w}^{v_n} (f - f_n) \right|$$

Je note la fonction $F: x \longmapsto \int\limits_v^x f$ qui est continue sur I car localement lipschitzienne (f étant bornée sur tout segment).

Ainsi

$$\left| \int_{v}^{v} f(x) \, dx - \int_{v}^{v_n} f_n(x) \, dx \right| \leq |F(v) - F(v_n)| + \left| \int_{v}^{v_n} ||f - f_n||_{\infty} \, dx \right| \leq |F(v) - F(v_n)| + ||w - v_n|| \cdot ||f - f_n||_{\infty}$$

Or le membre de droite est de limite nulle, ainsi $\left| \int_{w}^{v} f(x) dx - \int_{w}^{v_n} f_n(x) dx \right| \xrightarrow[n \to +\infty]{} 0$ d'où

$$\int_{w}^{v_n} f_n(x) \, dx \xrightarrow[n \to +\infty]{} \int_{w}^{v} f(x) \, dx$$

De manière analogue, on a $\int_{u_n}^w f_n(x) dx \xrightarrow[n \to +\infty]{} \int_u^w f(x) dx$

Par somme, on obtient : $\lim_{n \to +\infty} \left(\int_{u_n}^{v_n} f_n(x) \, dx \right) = \int_{u}^{v} f(x) \, dx$

Q 19. Par indépendance mutuelle des X_i $(1 \le i \le n)$, les Y_i le sont également selon le lemme des coalitions. De plus on remarque que $\forall i \in [1, n]$, $Y_i \sim \mathcal{B}(1/2)$ (loi de Bernoulli).

Ainsi $T_n = \sum_{i=1}^n Y_i \sim \mathcal{B}(n, 1/2)$ (loi de binomiale). Soit $j \in [0, n]$. On a alors

$$\mathbb{P}\left(\left\{T_n=j\right\}\right) = \binom{n}{j} \left(\frac{1}{2}\right)^j \left(\frac{1}{2}\right)^{n-j} = \frac{\binom{n}{j}}{2^n}$$

D'un autre côté, B_n est constante sur $\left[x_{n,j}-1/\sqrt{n},x_{n,j}+1/\sqrt{n}\right]$ égale à $\frac{\sqrt{n}}{2}\binom{n}{j}\frac{1}{2^n}$. Ainsi

$$\int_{x_{n,j}-1/\sqrt{n}}^{x_{n,j}+1/\sqrt{n}} B_n(x) dx = \frac{2}{\sqrt{n}} \times \frac{\sqrt{n}}{2} {n \choose j} \frac{1}{2^n}$$

On peut alors conclure que $\mathbb{P}\left(\{T_n=j\}\right) = \int\limits_{x_{n,j}-1/\sqrt{n}}^{x_{n,j}+1/\sqrt{n}} B_n(x) \ \mathrm{d}x$

Q 20. On remarque que $T_n = \frac{S_n + n}{2}$. Ainsi $S_n = 2T_n - n$ donc comme T_n est à valeurs dans [0, n].

$$\left\{u \leqslant \frac{S_n}{\sqrt{n}} \leqslant v\right\} = \left\{T_n \in \left[\frac{u\sqrt{n}+n}{2}, \frac{v\sqrt{n}+n}{2}\right]\right\} = \bigcup_{j \in J_n} \left\{T_n = j\right\}$$

Comme l'union est disjointe, on a bien $\boxed{\mathbb{P}\left(\left\{u\leqslant\frac{S_n}{\sqrt{n}}\leqslant v\right\}\right)=\sum_{j\in J_n}\mathbb{P}\left(\left\{T_n=j\right\}\right)}$

 ${f Q}$ 21. Le premier résultat :

On a
$$\frac{n+u\sqrt{n}}{2} \xrightarrow[n \to +\infty]{} + \infty$$
 et $n-1-\frac{n+v\sqrt{n}}{2} \xrightarrow[n \to +\infty]{} + \infty$

Ce qui nous fournit $N_0 \in \mathbb{N}$ tel que $\forall n \geqslant N_0, \ J_n \cap [\![0,n-1]\!] \neq \emptyset.$

On eremarque que $\forall j \in [0, n-1], x_{n,j} + \frac{2}{\sqrt{n}} = x_{n,j+1}$.

Soit $n \ge N_0$. Je note $j_m = \min(J_n)$ et $j_M = \max(J_n)$.

On a à l'aide des deux questions précédentes et la relation de Chasles :

$$\mathbb{P}\left(\left\{u \leqslant \frac{S_n}{\sqrt{n}} \leqslant v\right\}\right) = \sum_{j \in J_n} \int_{x_{n,j}-1/\sqrt{n}}^{x_{n,j}+1/\sqrt{n}} B_n(x) \, \mathrm{d}x = \int_{x_{n,j_m}-1/\sqrt{n}}^{x_{n,j_m}+1/\sqrt{n}} B_n(x) \, \mathrm{d}x$$

Par définition de J_n , on a $j_m - 1 < \frac{n + u\sqrt{n}}{2} \leqslant j_m$

donc $\frac{n+u\sqrt{n}}{2} \leqslant j_m < \frac{n+u\sqrt{n}}{2} + 1$. Ainsi

$$\frac{n+u\sqrt{n}}{\sqrt{n}} - \sqrt{n} \leqslant x_{n,j_m} < \frac{n+u\sqrt{n}}{\sqrt{n}} - \sqrt{n} + \frac{2}{\sqrt{n}}$$

À l'aide du théorème des gendarmes, on a $x_{n,j_m} \xrightarrow[n \to +\infty]{} u$ puis $x_{n,j_m} - 1/\sqrt{n} \xrightarrow[n \to +\infty]{} u$

De même $x_{n,j_M} + 1/\sqrt{n} \xrightarrow[n \to +\infty]{} v$

Par ailleurs les fonctions φ et B_n $(n \in \mathbb{N}^*)$ sont continues par morceaux sur \mathbb{R} et la suite $(B_n)_{n \in \mathbb{N}^*}$ converge uniformément vers φ sur \mathbb{R} selon la partie II.

Ainsi Q 18 s'applique et on a

$$\int_{x_{n,j_m}-1/\sqrt{n}}^{x_{n,j_M}+1/\sqrt{n}} B_n(x) dx \xrightarrow[n \to +\infty]{v} \int_{u}^{v} \varphi(x) dx$$

Ce qui permet de conclure que $\lim_{n\to +\infty} \mathbb{P}\left(\left\{u\leqslant \frac{S_n}{\sqrt{n}}\leqslant v\right\}\right) = \int\limits_u^v \varphi(x) \ \mathrm{d}x$

Le deuxième résultat :

Étape 1(a): Soit $n \in \mathbb{N}^*$. Comme \mathbb{R} est archimédien, on a :

$$\left\{ u \leqslant \frac{S_n}{\sqrt{n}} \right\} = \bigcup_{p \in \mathbb{N}^*} \left\{ u \leqslant \frac{S_n}{\sqrt{n}} \leqslant u + p \right\}$$

Ainsi par continuité croissante : $\mathbb{P}\left(\left\{u\leqslant\frac{S_n}{\sqrt{n}}\right\}\right)=\lim_{p\to+\infty}\mathbb{P}\left(\left\{u\leqslant\frac{S_n}{\sqrt{n}}\leqslant u+p\right\}\right)$

Il s'agit donc d'établir l'existence des membres et l'égalité :

$$\lim_{n \to +\infty} \lim_{p \to +\infty} \mathbb{P}\left(\left\{u \leqslant \frac{S_n}{\sqrt{n}} \leqslant u + p\right\}\right) = \lim_{p \to +\infty} \lim_{n \to +\infty} \mathbb{P}\left(\left\{u \leqslant \frac{S_n}{\sqrt{n}} \leqslant u + p\right\}\right)$$

Pour pouvoir obtenir à l'aide du résultat précédent

$$\lim_{n\to +\infty} \mathbb{P}\left(\left\{u\leqslant \frac{S_n}{\sqrt{n}}\right\}\right) = \lim_{p\to +\infty} \int\limits_{u}^{u+p} \varphi(x) \ \mathrm{d}x = \int\limits_{u}^{+\infty} \varphi(x) \ \mathrm{d}x$$

Étape 2(a): on va établir le résultat de double limite (échange de limites).

Pour
$$p \in \mathbb{N}^*$$
, on note $f_p : \mathbb{N}^* \to \mathbb{R}$ et $f : \mathbb{N}^* \to \mathbb{R}$
$$n \mapsto \mathbb{P}\left(\left\{u \leqslant \frac{S_n}{\sqrt{n}} \leqslant u + p\right\}\right) \qquad n \mapsto \mathbb{P}\left(\left\{u \leqslant \frac{S_n}{\sqrt{n}}\right\}\right)$$

(i) Pour tout $p \in \mathbb{N}^*$, on a vu, selon le premier résultat que

$$\lim_{n \to +\infty} f_p(n) = \int_{u}^{u+p} \varphi(x) \, dx \quad (i)$$

(ii) Soit $p \in \mathbb{N}^*$ et $n \in \mathbb{N}^*$. Comme on a l'union disjointe

$$\left\{ u \leqslant \frac{S_n}{\sqrt{n}} \leqslant u + p \right\} \cup \left\{ u + p < \frac{S_n}{\sqrt{n}} \right\} = \left\{ u \leqslant \frac{S_n}{\sqrt{n}} \right\}$$

Ainsi on a

$$0 \leqslant f(n) - f_p(n) = \mathbb{P}\left(\left\{u + p < \frac{S_n}{\sqrt{n}}\right\}\right)$$

On a $S_n = \sum_{i=1}^n X_i$ où les X_i sont indépendantes et admettent un moment d'ordre 2 car bornées.

On a
$$\mathbb{E}(S_n) = \sum_{i=1}^n \mathbb{E}(X_i) = 0$$
 et $\mathbb{V}(S_n) = \sum_{i=1}^n \mathbb{V}(X_i) = \sum_{i=1}^n (\mathbb{E}(X_i^2) - \mathbb{E}(X_i)^2) = \sum_{i=1}^n (1-0) = n$

Ainsi
$$\mathbb{E}\left(\frac{S_n}{\sqrt{n}}\right) = 0$$
 et $\mathbb{V}\left(\frac{S_n}{\sqrt{n}}\right) = \frac{\mathbb{V}(S_n)}{\sqrt{n^2}} = 1$.

On choisit $p_0 = 1 + |\lfloor -u \rfloor|$ et on suppose que $p \geqslant p_0$ de sorte que u + p > 0.

Comme $\left\{u+p < \frac{S_n}{\sqrt{n}}\right\} \subset \left\{u+p \leqslant \left|\frac{S_n}{\sqrt{n}} - \mathbb{E}\left(\frac{S_n}{\sqrt{n}}\right)\right|\right\}$, en appliquant Bienaymé-Tchebychev, on a $\mathbb{P}\left(\left\{u+p < \frac{S_n}{\sqrt{n}}\right\}\right) \leqslant \frac{1}{(u+n)^2}$

On a donc montré

$$\forall p \geqslant p_0, \ \forall n \in \mathbb{N}^*, \ |f(n) - f_p(n)| \leqslant \frac{1}{(u+p)^2}$$

Or on a $\frac{1}{(u+p)^2} \xrightarrow[p \to +\infty]{} 0$ (majorant indépendant de n).

Ainsi la suite $(f_p)_{p\in\mathbb{N}^*}$ converge uniformément vers f sur \mathbb{N}^* .

Avec (i) et (ii), le théorème de la double limite s'applique ce qui nous donne l'existence des membres et l'égalité:

$$\lim_{n \to +\infty} f(n) = \lim_{n \to +\infty} \lim_{p \to +\infty} f_p(n) = \lim_{p \to +\infty} \lim_{n \to +\infty} f_p(n)$$

Étape 3(a): on peut conclure

$$\lim_{n \to +\infty} \mathbb{P}\left(\left\{u \leqslant \frac{S_n}{\sqrt{n}}\right\}\right) = \lim_{p \to +\infty} \int\limits_{u}^{u+p} \varphi(x) \ \mathrm{d}x = \int\limits_{u}^{+\infty} \varphi(x) \ \mathrm{d}x = \int\limits_{-\infty}^{+\infty} \varphi(x) \ \mathrm{d}x - \int\limits_{-\infty}^{u} \varphi(x) \ \mathrm{d}x$$

C'est à dire :
$$\left|\lim_{n\to+\infty} \mathbb{P}\left(\left\{u\leqslant \frac{S_n}{\sqrt{n}}\right\}\right) = 1 - \Phi(u)\right|$$
 en utilisant **Q 9**.

II.B -

Q 22. Soit x > 0. Soit $n \in \mathbb{N}^*$. On a $\{|S_n| \ge x\sqrt{n}\} = \left\{x \le \frac{S_n}{\sqrt{n}}\right\} \cup \left\{-x \ge \frac{S_n}{\sqrt{n}}\right\}$ (union disjointe).

Comme en **Q 21**, on peut montrer que $\forall u \in \mathbb{R}, \lim_{n \to +\infty} \mathbb{P}\left(\left\{u \geqslant \frac{S_n}{\sqrt{n}}\right\}\right) = 1 - \Phi(u)$. Ainsi

$$\mathbb{P}\left(\left\{|S_n| \geqslant x\sqrt{n}\right\}\right) \xrightarrow[n \to +\infty]{} 2(1 - \Phi(x))$$

En utilisant **Q** 12, on obtient $2x^2(1-\Phi(x)) \xrightarrow[x\to+\infty]{} 0$.

Ce qui nous fournit $x_0 \ge 1$ tel que $\forall x \ge x_0, \ \left| 2x^2(1 - \Phi(x)) \right| \le \varepsilon/2$.

Soit $x \geqslant x_0$. On a

$$x^2 \mathbb{P}\left(\left\{|S_n| \geqslant x\sqrt{n}\right\}\right) \xrightarrow[n \to +\infty]{} 2x^2 (1 - \Phi(x))$$

ce qui nous fournit $n_x \in \mathbb{N}$ tel que

$$\forall n \geqslant n_x, |x^2 \mathbb{P}\left(\left\{|S_n| \geqslant x\sqrt{n}\right\}\right) - 2x^2(1 - \Phi(x))| \leqslant \varepsilon/2$$

On a bien l'existence de $n_x \in \mathbb{N}$ tel que $\forall n \geqslant n_x, \ x^2 \mathbb{P}\left(\left\{|S_n| \geqslant x\sqrt{n}\right\}\right) \leqslant \varepsilon$

Q 23. On a donc $\forall m \ge n_x$, $x^2 \mathbb{P}\left(\left\{|S_m| \ge x\sqrt{m}\right\}\right) \le \varepsilon$.

On a $x\sqrt{n} > 0$ et par mutuelle indépendance des X_i , la sous-partie IC s'applique et on a :

$$\mathbb{P}\left(\left\{\max_{1\leqslant p\leqslant n}|S_p|\geqslant 3x\sqrt{n}\right\}\right)\leqslant 3\max_{1\leqslant p\leqslant n}\mathbb{P}\left(\left\{|S_p|\geqslant x\sqrt{n}\right\}\right)$$

Soit $p \in [1, n]$. Il s'agit d'établir que $x^2 \mathbb{P}\left(\left\{|S_p| \geqslant x\sqrt{n}\right\}\right) \leqslant \varepsilon$.

Premier cas: si $p \geqslant n_x$ alors la question **Q 22** s'applique et on a

$$x^2 \mathbb{P}\left(\{|S_p| \geqslant x\sqrt{p}\}\right) \leqslant \varepsilon$$

Comme $\{|S_p| \ge x\sqrt{n}\} \subset \{|S_p| \ge x\sqrt{p}\}$, on a bien le résultat voulu.

Deuxième cas : si $p < n_x$, on applique l'inégalité de Bienaymé-Tchebichev à S_p .

Comme les X_i sont dans L^2 , alors il en est de même pour S_p . On a $\mathbb{E}(S_p) = \sum_{i=1}^p \mathbb{E}(X_i) = 0$

et par indépendance des X_i , on a $\mathbb{V}(S_p) = \sum_{i=1}^p \mathbb{V}(X_i) = \sum_{i=1}^p \left(\mathbb{E}(X_i^2) - \mathbb{E}(X_i)^2\right) = p$.

Comme $x\sqrt{n} > 0$, on a

$$\mathbb{P}\left(\left\{|S_p| \geqslant x\sqrt{n}\right\}\right) = \mathbb{P}\left(\left\{|S_p - \mathbb{E}(S_p)| \geqslant x\sqrt{n}\right\}\right) \leqslant \frac{\mathbb{V}(S_p)}{\left(x\sqrt{n}\right)^2} = \frac{p}{x^2n}$$

On a $1 \leqslant p < n_x \leqslant n\varepsilon$ donc

$$\mathbb{P}\left(\left\{|S_p| \geqslant x\sqrt{n}\right\}\right) \leqslant \frac{n\varepsilon}{r^2 n}$$

Conclusion : On a bien établi le résultat voulu pour tout $p \in [1, n]$. Ce qui permet de conclure que

$$\boxed{x^2 \mathbb{P}\left(\left\{\max_{1 \leqslant p \leqslant n} |S_p| \geqslant 3x\sqrt{n}\right\}\right) \leqslant 3\varepsilon}$$

Problème 2

Q 1. Une petite étude rapide de la fonction $x \mapsto \frac{\ln x}{x}$ montre que celle-ci a pour image l'intervalle $]-\infty,1/e]$ (je ne détaille pas, c'est du niveau Première Année).

Q 2.

a) S'il existe $t \in \mathbb{R}$ tel que $\varphi(t) = 0$, alors pour tout $x \in \mathbb{R}$, $\varphi(x) = \varphi(t)\varphi(x-t) = 0$.

Donc si φ n'est pas la fonction nulle, elle ne s'annule jamais, donc en particulier $\varphi(0) \neq 0$. Or $\varphi(0)$ est solution de l'équation $X = X^2$ (spécialiser $x \leftarrow 0$ et $y \leftarrow 0$), donc $\varphi(0) = 1$.

- b) On dérive la condition (C) par rapport à la variable y : pour tout $(x,y) \in \mathbb{R}^2$, $\varphi'(x+y) = \varphi(x)\varphi'(y)$, puis on spécialise $y \leftarrow 0$: pour tout $x \in \mathbb{R}$, $\varphi'(x) = \lambda \varphi(x)$.
- c) On résout l'équation différentielle précédente, on trouve que φ est de la forme $x \mapsto \mu e^{\lambda x}$. Or $\varphi(0) = 1$, donc $\varphi: x \mapsto e^{\lambda x}$.

Réciproquement, pour tout $\lambda \in \mathbb{R}$, la fonction $x \mapsto e^{\lambda x}$ est clairement solution.

Donc les solutions sont les fonctions $x \mapsto e^{\lambda x}$, où λ est un réel quelconque.

Q 3.

a)
$$P'_n = \frac{1}{n!}((X+n)^{n-1} + (n-1)X(X+n)^{n-2}) = \frac{1}{n!}(X+n)^{n-2}(X+n+(n-1)X) = \frac{1}{n!}(X+1+n-1)^{n-2}(nX+n) = \frac{1}{(n-1)!}(X+1)(X+1+n-1)^{n-2} = P_{n-1}(X+1).$$

- b) Par récurrence sur n: on pose $\mathscr{P}(n)$ le prédicat « pour tout $(x,y) \in \mathbb{R}^2$, $P_n(x+y) = \sum_{k=0}^n P_k(x) P_{n-k}(y)$ ».
 - $\mathscr{P}(0)$ est vraie car $P_0 = 1$.
 - Si $\mathscr{P}(n-1)$ est vraie $(n \ge 1)$, alors on veut montrer pour tout $y \in \mathbb{R}$ l'égalité des fonctions $\alpha : x \mapsto P_n(x+y)$ et $\beta: x \mapsto \sum_{k=0}^{n} P_k(x) P_{n-k}(y)$.

Pour cela, on compare d'abord leurs dérivées : pour tout $x\in\mathbb{R},$ — $\alpha'(x)=P_n'(x+y)=P_{n-1}(x+y+1)$

$$--\alpha'(x) = P'_n(x+y) = P_{n-1}(x+y+1)$$

$$-\alpha(x) = P_n(x+y) = P_{n-1}(x+y+1)$$

$$-\beta'(x) = \sum_{k=0}^{n} P_k'(x) P_{n-k}(y) = \sum_{k=1}^{n} P_k'(x) P_{n-k}(y) \text{ (car } P_0 = 1 \text{ donc } P_0' = 0)$$

donc
$$\beta'(x) = \sum_{k=1}^{n} P_{k-1}(x+1)P_{n-k}(y) = \sum_{j=0}^{n-1} P_j(x+1)P_{n-1-j}(y) = P_{n-1}(x+1+y)$$
 d'après l'hypothèse de

Donc les deux fonctions α et β diffèrent d'une constante. En évaluant en x=0, il vient $\alpha(0)=P_n(y)$ et

$$\beta(0) = \sum_{k=0}^{n} P_k(0) P_{n-k}(y) = P_0(0) P_n(y) = P_n(y).$$

Donc la propriété $\mathcal{P}(n)$ est vraie.

Q 4.

a) Pour tout $n \in \mathbb{N}^*$, on pose $u_n = |P_n(x)a^n| = \frac{1}{n!}|x|.|x+n|^{n-1}.|a|^n$.

Dans les cas où a=0 ou x=0, la série $\sum u_n$ est la série nulle donc elle est convergente.

Dans les autres cas, à partir d'un certain rang, $u_n \neq 0$ (car $x + n \xrightarrow[n \to +\infty]{} + \infty$), donc on peut évaluer $\frac{u_{n+1}}{u_n} =$ $\frac{1}{n+1}|a|.|x+n|.\left|\frac{x+n+1}{x+n}\right|^n = \frac{1}{n+1}|a|.|x+n|.\left|1 + \frac{1}{x+n}\right|^n \xrightarrow[n \to +\infty]{} |a|e.$

Donc si $|a| < \frac{1}{a}$, alors d'après la règle de d'Alembert, la série $\sum u_n$ converge.

Dans le cas où $|a| = \frac{1}{e}$, on ne peut pas conclure selon ce principe, on utilise la formule de Stirling pour donner un équivalent de u_n :

$$u_n \underset{n \to +\infty}{\sim} \frac{1}{\sqrt{2\pi n} \, n^n} |x| \cdot (x+n)^{n-1} = \frac{|x|}{\sqrt{2\pi}} \times \frac{1}{x+n} \times \left(1 + \frac{x}{n}\right)^n \underset{n \to +\infty}{\sim} \frac{|x|}{\sqrt{2\pi}} \frac{1}{n^{3/2}} e^x$$

Donc par comparaison classique à une série de Riemann, la série $\sum u_n$ converge.

b) On considère la série de fonctions $u_n: x \mapsto a^n P_n(x)$. D'après la question précédente, cette série converge simplement sur \mathbb{R} .

Il est évident que toutes les fonctions u_n sont de classe C^1 (ce sont des polynômes). De plus, pour tout $x \in \mathbb{R}$ et $n \in \mathbb{N}^*, \ u'_n(x) = a^n P'_n(x) = a^n P_{n-1}(x+1).$

Soit
$$r > 0$$
. Pour tout $x \in [-r, r]$ et $n \in \mathbb{N}^*$, $|u_n'(x)| = |a|^n \cdot \frac{1}{(n-1)!} |x| \cdot |x+n|^{n-2} \le |a|^n \cdot \frac{r}{(n-1)!} \cdot (r+n)^{n-2} = r$

$$|a|.|a|^{n-1}P_{n-1}(r+1)$$

Or d'après la question précédente, la série de terme général $|a|^{n-1}P_{n-1}(r+1)$ converge, donc ceci prouve que la série de fonctions $\sum u'_n$ converge normalement sur [-r,r].

D'après le th. de dérivation sous le signe \sum , on en déduit que $F_a = \sum_{n=0}^{+\infty} u_n$ est de classe C^1 sur [-r, r]. Comme ceci est vrai pour tout r > 0, F_a est de classe C^1 sur $\mathbb{R} = \bigcup_{r > 0} [-r, r]$.

De plus, pour tout
$$x \in \mathbb{R}$$
, $F'_a(x) = \sum_{n=0}^{+\infty} a^n P'_n(x) = \sum_{n=1}^{+\infty} a^n P_{n-1}(x+1) = a \sum_{n=1}^{+\infty} a^{n-1} P_{n-1}(x+1) = a F_a(x+1)$.

c) Les séries $\sum a^n P_n(x)$ et $\sum a^n P_n(y)$ convergent absolument donc par produit de Cauchy,

$$F_a(x)F_a(y) = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^n a^k P_k(x) a^{n-k} P_{n-k}(y) \right) = \sum_{n=0}^{+\infty} a^n \left(\sum_{k=0}^n P_k(x) P_{n-k}(y) \right) = \sum_{n=0}^{+\infty} a^n P_n(x+y) = F_a(x+y)$$

en utilisant la relation prouvée en Q 3b.

d) D'après la question \mathbf{Q} 2, F_a vérifiant la condition \mathbf{C} , elle est de la forme $x \mapsto e^{\lambda x}$ où $\lambda = F_a'(0)$. Or d'après le point \mathbf{b} , $F_a'(0) = aF_a(1)$, donc pour tout $x \in \mathbb{R}$, $F_a(x) = e^{aF_a(1)x}$.

En particulier $(x \leftarrow 1)$, on a $F_a(1) = e^{aF_a(1)}$, donc $\ln F_a(1) = aF_a(1) : F_a(1)$ est donc solution de l'équation E_a .

Q 5.

a) $G(a) = \sum_{n=0}^{+\infty} P_n(1)a^n = 1 + \sum_{n=1}^{+\infty} \frac{(n+1)^{n-1}}{n!}a^n$ est la somme d'une série entière qui converge simplement sur le segment $\left[-\frac{1}{e},\frac{1}{e}\right]$ d'après la question \mathbf{Q} 4a. Donc sur l'ouvert $\left]-\frac{1}{e},\frac{1}{e}\right[$, elle est de classe C^1 d'après le cours.

Sa dérivée est alors $G': a \mapsto \sum_{n=1} n P_n(1) a^{n-1}$, qui est positive sur $\left[0, \frac{1}{e}\right[$ (intervalle ouvert à droite!).

Enfin, comme la série entière converge en a=1, le th. de convergence radiale prouve que G est continue sur $\left[0,\frac{1}{e}\right]$ (intervalle fermé).

Donc G est croissante sur $\left[0, \frac{1}{e}\right]$.

b) On sait que $F_a(1)$ est solution de E_a . Si cette équation possède une autre solution, alors l'étude menée en \mathbf{Q} 1 montre que ceci n'a lieu que lorsque $a \in \left]0, \frac{1}{e}\right[$, que l'équation a alors deux solutions et que s_a est l'unique solution appartenant à l'intervalle]1, e[, l'autre étant dans $]e, +\infty[$. Il suffit donc d'étudier le cas où $a \in \left]0, \frac{1}{e}\right[$.

Comme G(0) = 1 et $G(1/e) = F_{1/e}(1)$ est l'unique solution de $E_{1/e}$ qui vaut e, la monotonie de G sur $\left[0, \frac{1}{e}\right]$ prouve que $1 = G(0) \leqslant G(a) = F_a(1) \leqslant G(1/e) = e$, donc $F_a(1) = s_a$.

Q 6. Pour y > 0, $y^y = c \iff y \ln y = \ln c \iff \ln \frac{1}{y} = -\ln c \times \frac{1}{y}$, donc $y^y = c$ si et seulement si $z = \frac{1}{y}$ est solution de l'équation $E_{-\ln c}$.

Or comme $1 < c < e^{1/e}$, on a $a = -\ln c \in \left] -\frac{1}{e}, 0 \right[$, donc d'après ce qui précède, l'équation $y^y = c$ possède une unique solution qui est $y_0 = \frac{1}{F_a(1)}$.

Or d'après la relation prouvée en \mathbf{Q} 4c, $F_a(0) = 1 = F_a(1)F_a(-1)$, donc $y_0 = F_a(-1)$:

$$y_0 = 1 + \sum_{n=1}^{+\infty} \frac{1}{n!} \cdot (-1) \cdot (n-1)^{n-1} a^n = 1 - a - \sum_{n=2}^{+\infty} \frac{(n-1)^{n-1}}{n!} a^n = 1 + \ln c + \sum_{n=2}^{+\infty} (-1)^{n-1} \frac{(n-1)^{n-1}}{n!} (\ln c)^n$$

9