ÉQUATIONS DIFFÉRENTIELLES LINÉAIRES

* Exercice proche du cours ** Exercice de difficulté normale *** Exercice difficile (voire très difficile)

*1) Résolvez les équations différentielles suivantes sur les intervalles indiqués :

- a) $xy' + y = \sin x \operatorname{sur} \mathbb{R}^*_{\perp}$
- b) $ty' 2y = t \operatorname{sur} \mathbb{R}^*_-$

- a) $xy + y = \sin x \sin x$, b) $ty 2y = t \sin x$. c) $xy' + (x 1)y = x^2 \sin x^*$, d) $(1 + t^2)y' + ty = 1 + 2t^2 \sin x$ e) $(x^2 1)y' + xy = x^3 \sin y 1$, +1[f) $(x 1)y' + xy = \sin x \sin y \infty$, 1[

*2) Même exercice:

- a) $(x+5)(x-3)y' + (x+13)y = 1 + \frac{5}{x} \text{ sur }]3, +\infty[$ b) $(x+1)^2y' (3x+4)y = 3(x+1)^3 \text{ sur }]-\infty, -1[$ c) $(x^2-2x+1)y' + xy = \exp\left(\frac{1}{x-1}\right) \text{ sur } [1, +\infty[$ d) $x(x-1)y' (3x-1)y = -x^2(x^2+1) \text{ sur }]0, 1[$

**3) Déterminez, s'il en existe, les solutions sur $\mathbb R$ des équations différentielles suivantes (équations avec raccordements) :

- a) xy' 2y = -x b) $xy' + y = \sin x$ c) $xy' y = \frac{x}{1 + x^2}$ d) $(1 x^2)y' + 2y = (x 1)^2$ e) (x 1)(x 2)y' y = x

*4) Résolvez les systèmes différentiels suivants :

a)
$$\begin{cases} x' = 4x - 2y \\ y' = x + y \end{cases}$$

a)
$$\begin{cases} x' = 4x - 2y \\ y' = x + y \end{cases}$$
 b)
$$\begin{cases} x' = 2x + y \\ y' = -x \\ z' = x + y + z \end{cases}$$
 et
$$\begin{cases} x(0) = 0 \\ y(0) = 1 \\ z(0) = -1 \end{cases}$$

c)
$$\begin{cases} x' = x - y + \frac{1}{\cos t} & \text{sur } \end{bmatrix} \frac{-\pi}{2}, \frac{\pi}{2} \begin{bmatrix} y' = 2x - y \end{bmatrix}$$

c)
$$\begin{cases} x' = x - y + \frac{1}{\cos t} & \text{sur } \left] \frac{-\pi}{2}, \frac{\pi}{2} \right[& \text{d} \end{cases} \begin{cases} x' = tx - y \\ y' = (2 - t)x + y \end{cases} \text{ (ind : solutions polynômiales)}$$

**5) Résolvez les systèmes différentiels suivants :

a)
$$\begin{cases} x' = 4x + y + 2z \\ y' = 4x + 2y + 2z \\ z' = -4x - 2y - 2z \end{cases}$$

b)
$$\begin{cases} x' = -x + y + z \\ y' = x - y - z \\ z' = x - y - 3z \end{cases}$$

a)
$$\begin{cases} x' &= 4x + y + 2z \\ y' &= 4x + 2y + 2z \\ z' &= -4x - 2y - 2z \end{cases}$$
 b)
$$\begin{cases} x' &= -x + y + z \\ y' &= x - y - z \\ z' &= x - y - 3z \end{cases}$$
 c)
$$\begin{cases} x' &= -4x + 8y + 22z \\ y' &= -2x + 3y + 4z \\ z' &= -x + 2y + 7z \end{cases}$$
 d)
$$\begin{cases} x' &= y + 2z \\ y' &= -x + 2y + 2z \\ z' &= -x + 2y + 2z \end{cases}$$
 e)
$$\begin{cases} x' &= -4x + 8y + 22z \\ y' &= -2x + 3y + 4z \\ z' &= -x + 2y + 7z \end{cases}$$
 f)
$$\begin{cases} x' &= 2x + z \\ y' &= x - y - z \\ z' &= -x + 2y + 2z \end{cases}$$
 f)
$$\begin{cases} x' &= -4x + 8y + 22z \\ y' &= -2x + 3y + 4z \\ z' &= -x + 2y + 7z \end{cases}$$

d)
$$\begin{cases} x' = y + 2z \\ y' = 2x + y - z \\ z' = -2x - y - z \end{cases}$$

e)
$$\begin{cases} x' = 2y + 2z \\ y' = -x + 2y + 2z \\ z' = -x + y + 3z \end{cases}$$

f)
$$\begin{cases} x' = 2x + z \\ y' = x - y - z \\ z' = -x + 2y + 2z \end{cases}$$

**6) Résolvez le système différentiel homogène à coefficients variables :

$$\begin{cases} x'(t) = (t-2) x(t) - (t-1) y(t) \\ y'(t) = 2(t-1) x(t) - (2t-1) y(t). \end{cases}$$

Indication: On pourra présenter le système différentiel sous forme d'équation différentielle vectorielle et réduire la matrice A(t)de ses coefficients.

*7) Résolvez l'équation différentielle $(1+x^2)y'' - (3x^2-4x+3)y' + (2x^2-6x+4)y = 0$ en faisant le changement de function inconnue $z: x \mapsto (1+x^2)y(x)$.

**8) Résolvez l'équation différentielle $xy'' - y' - 4x^3y = x^3e^{x^2}$ sur l'intervalle $]0, +\infty[$ en effectuant le changement de fonction inconnue $z(x) = y(\sqrt{x})$.

**9)

a) Soit (a, b, c) trois réels, $a \neq 0$. Montrez que y est solution de l'équation $ax^2y'' + bxy' + cy = 0$ sur \mathbb{R}_+^* si et seulement si $z:t\mapsto y(e^t)$ est solution d'une équation linéaire du second ordre à coefficients constants.

b) Exemples: résolvez l'équation $x^2y'' - xy' + y = 0$ sur \mathbb{R}_+^* ; résolvez l'équation $x^2y'' + y = 0$ sur \mathbb{R}_+^* .

c) Déterminez les fonctions f dérivables sur \mathbb{R}_+^* telles que : $\forall x > 0$ $f'(x) = f\left(\frac{1}{x}\right)$.

**10) Résolvez les équations différentielles suivantes en vous aidant des indications fournies :

- a) y'' + ty' + y = 0 (chercher des solutions dév. en série entière)
- b) y'' + ty' + 3y = 0 (idem)
- c) $ty'' + 2y' ty = 0 \text{ sur } \mathbb{R}_{+}^{*} \text{ (idem)}$
- d) $4ty'' + 2y' y = 0 \text{ sur } \mathbb{R}_{+}^{*} \text{ (idem)}$
- e) $ty'' y' 4t^3y = 0 \text{ sur } \mathbb{R}_+^* \text{ (idem)}$
- f) $t^2y'' + ty' + y = 0$ sur \mathbb{R}_+^* (changement de variable $t = e^s$)
- g) $ty'' + 2(t+1)y' + 2y = 1 e^{-2t}$ sur \mathbb{R}_+^* (chercher une solution $t \mapsto t^{\alpha}$ et utiliser la méthode de variation de la constante)

**11) Raccordements de solutions

Déterminez les solutions sur \mathbb{R} des équations c, d, e, f de l'exercice précédent.

- **12) On considère la fonction $A: t \mapsto \arcsin^2(t)$.
 - a) Sans chercher à calculer ses coefficients, justifiez que la fonction A est développable en série entière sur un intervalle I que l'on précisera.
 - b) Montrez que la fonction A est solution de l'équation différentielle :

$$\forall t \in I, \quad (1 - t^2)y''(t) - ty'(t) = 2.$$

- c) Déduisez-en le développement en série entière de A
- **13) On considère l'équation différentielle

(E)
$$ty'' + y' + ty = 0$$
.

- a) Trouvez sous forme d'un DSE l'unique solution J_0 de (E) telle que $J_0(0) = 1$ et $J'_0(0) = 0$.
- b) \triangleright Développez $\cos(t \sin \theta)$ en série entière de t, en l'écrivant sous la forme

$$\cos(t\,\sin\theta) = \sum_{n=0}^{+\infty} u_n(\theta),$$

de façon que $u_n(\theta)$ possède dans son expression une puissance de t.

$$\int_0^\pi \, \sum_{n=0}^{+\infty} \, u_n(\theta) \, \, \mathrm{d}\theta = \sum_{n=0}^{+\infty} \, \int_0^\pi u_n(\theta) \, \, \mathrm{d}\theta.$$

- ightharpoonup Déduisez-en que : $J_0(t) = \frac{1}{\pi} \int_0^{\pi} \cos(t \sin \theta) d\theta$.
- c) On veut retrouver d'une autre façon cette expression de J_0 .
 - ⊳ Vérifiez, en utilisant des dérivations sous le signe somme, que

$$f: t \mapsto \frac{1}{\pi} \int_0^{\pi} \cos(t \sin \theta) d\theta$$

vérifie bien (E).

- ightharpoonup Montrez qu'il existe $\alpha > 0$ tel que J_0 ne s'annule pas sur $[-\alpha, \alpha]$, puis montrez que $K_0 : t \mapsto J_0(t) \int_{\alpha}^{t} \frac{1}{sJ_0(s)^2} ds$ est aussi solution de (E) sur $[0, \alpha]$.
- \triangleright Justifiez qu'il existe $(\lambda, \mu) \in \mathbb{R}^2$ tel que $f = \lambda J_0 + \mu K_0$ sur $[0, \alpha]$
- \triangleright Déduisez-en que $f = J_0$.

**14) Soit p et q deux applications continues de \mathbb{R} dans \mathbb{R} .

On suppose p impaire et q paire, et on considère l'équation différentielle : (H) y'' + py' + qy = 0.

- a) Montrez qu'il existe une unique solution y_1 de (H) telle que : $y_1(0) = 1$, $y'_1(0) = 0$ et y_1 est paire.
- b) Même question pour y_2 solution de (H) telle que : $y_2(0) = 0$, $y_2'(0) = 1$ et y_2 est impaire.
- c) Montrez que (y_1, y_2) est une base de $\mathcal{S}(H)$ (ensemble des solutions de (H)).
- **15) Montrez, sans chercher à les expliciter à l'aide des fonctions usuelles, que toutes les solutions de l'équation différentielle:

$$(E) \quad y'' - xy = 0$$

sont développables en série entière sur \mathbb{R} .

**16) Soit $a: \mathbb{R}_+ \to \mathbb{R}$ continue et intégrable sur \mathbb{R}_+ .

Montrez que les solutions de l'équation différentielle

$$y' - a(x) y = 0$$

sont bornées sur \mathbb{R}_+ .

**17) Déterminez toutes les applications $f: \mathbb{R} \to \mathbb{R}$ dérivables en 0 telles que :

$$\forall (x,y) \in \mathbb{R}^2, \quad f(x+y) = e^x f(y) + e^y f(x).$$

- **18) Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice fixée et (H) le système différentiel X' = AX. On munit $\mathcal{M}_{n,1}(\mathbb{R})$ de sa structure euclidienne canonique.
 - a) Si X est une solution de (H), justifiez que $||X||^2$ est une fonction dérivable et calculer sa dérivée.
 - b) Montrez que toute solution du système différentiel (H) est de norme constante si et seulement si A est une matrice antisymétrique.
- **19) Soit $P: \mathbb{R} \to \mathscr{A}_n(\mathbb{R})$ continue.
 - a) Montrez qu'il existe une unique fonction $U: \mathbb{R} \to \mathcal{M}_n(\mathbb{R})$ de classe C^1 telle que pour tout $t \in \mathbb{R}$, U'(t) = P(t)U(t) et $U(0) = I_n$.
 - b) Montrez que pour tout $t \in \mathbb{R}$, U(t) est une matrice orthogonale de déterminant 1.
- **20) Soit $P: \mathbb{R} \to \mathscr{A}_n(\mathbb{R})$ continue, $S_0 \in \mathscr{S}_n(\mathbb{R})$.
 - a) Montrez qu'il existe une unique fonction $S: \mathbb{R} \to \mathscr{M}_n(\mathbb{R})$ de classe C^1 telle que $S(0) = S_0$ et pour tout $t \in \mathbb{R}$, S'(t) = P(t)S(t) S(t)P(t).
 - b) Montrez que pour tout $t \in \mathbb{R}$, S(t) est une matrice symétrique.
 - c) Montrez qu'il existe une application $U: \mathbb{R} \to \mathcal{O}_n(\mathbb{R})$ de classe C^1 telle que pour tout $t \in \mathbb{R}$, $S(t) = U(t) S_0 U(t)^T$ (indication: utiliser l'exercice précédent).
- **21) Soit $A: \mathbb{R} \to \mathscr{M}_n(\mathbb{C})$ dérivable et $B: \mathbb{R} \to \mathscr{M}_n(\mathbb{C})$ continue telles que pour tout $t \in \mathbb{R}$, A'(t) = A(t)B(t) B(t)A(t).
 - a) Montrez que pour tout $k \in \mathbb{N}$, $(A^k)' = A^k B B A^k$.
 - b) Montrez que le spectre de A est constant.
- **22) Soit $p: \mathbb{R} \to \mathbb{R}_+$ une fonction continue non identiquement nulle.
 - a) Montrez que toute solution sur \mathbb{R} de l'équation différentielle y'' + p(t)y = 0 s'annule en au moins un point.
 - b) Soit y une solution de l'équation différentielle y'' p(t) y = 0 autre que la fonction nulle. Montrez que y et y' s'annulent au plus une fois.

Indication : calculez l'intégrale $\int_a^b p(t) \, y^2(t) \, dt$ et étudier les conséquences d'une annulation de y en a et en b.

- **23) Déterminez toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ dérivables sur \mathbb{R} telles que : $\forall x \in \mathbb{R}$ $f'(x) + f(-x) = e^x$.
- **24) Soit k un réel. Déterminez les fonctions $f: \mathbb{R} \to \mathbb{R}$ dérivables sur \mathbb{R} telles que : $\forall x \in \mathbb{R}$ f'(x) = f(k-x).
- **25) Déterminez les fonctions f continues sur \mathbb{R} telles que : $\forall x \in \mathbb{R}$ $f(x) = \int_0^x (x-t)f(t) dt + \cos x$.
- **26) Une équation différentielle non linéaire.

Résolvez l'équation différentielle

$$2t e^{y(t)} y'(t) + e^{y(t)} - t^2 = 0$$

à l'aide du changement de fonction inconnue $u = e^y$.

On étudiera avec soin l'ensemble de définition de chaque solution y.