Problème 1 - Th. de Stone-Weierstrass

Soit $(a, b) \in \mathbb{R}^2$ tel que a < b. On note $E_0 = C^0([a, b], \mathbb{R})$, $E_1 = C^1([a, b], \mathbb{R})$ et P l'ensemble des fonctions polynômes sur [a, b].

Pour $f \in E_0$, on pose $||f||_{a,b} = \sup_{t \in [a,b]} |f(t)|$. On rappelle que $|| ||_{a,b}$ est une norme sur E_0 , appelée la norme infinie.

I. Densité de E_1 dans E_0

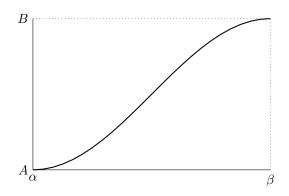
- Q 1. Soit α, β, γ trois réels tels que $\alpha < \beta < \gamma, \varphi$ une fonction de classe C^1 sur le segment $[\alpha, \beta]$ et ψ de classe C^1 sur $[\beta, \gamma]$ telles que $\varphi(\beta) = \psi(\beta)$ et $\varphi'(\beta) = \psi'(\beta)$. Justifiez que la fonction définie par morceaux $t \mapsto \begin{cases} \varphi(t) & \text{si } t \in [\alpha, \beta[t], \gamma] \\ \psi(t) & \text{si } t \in [\beta, \gamma] \end{cases}$ est aussi de classe C^1 sur $[\alpha, \gamma]$.
- **Q 2.** Soit α, β, A, B 4 réels tels que $\alpha < \beta$. Donnez un exemple concret d'une fonction g définie sur $[\alpha, \beta]$ telle que :

— g est de classe C^1 et monotone sur $[\alpha, \beta]$;

 $-g(\alpha) = A \text{ et } g(\beta) = B;$

— $g'(\alpha) = 0 \text{ et } g'(\beta) = 0.$

Autrement dit, la courbe de g doit ressembler à celle-ci :



Une telle fonction g est notée désormais $\Phi_{\alpha,\beta,A,B}$.

- **Q 3.** Soit α, β 2 réels tels que $\alpha < \beta$. Soit f une fonction continue sur $[\alpha, \beta]$ à valeurs réelles. On suppose qu'il existe M > 0 tel que pour tout $(s,t) \in [\alpha,\beta]^2$, $|f(s) f(t)| \leq M$.

 Montrez que $||f \Phi_{\alpha,\beta,f(\alpha),f(\beta)}||_{\alpha,\beta} \leq 2M$.
- **Q 4.** Soit $f \in E_0$ et $\varepsilon > 0$. On choisit $\delta > 0$ tel que pour tout $(s,t) \in [a,b]^2$, si $|s-t| \le \delta$, alors $|f(s)-f(t)| \le \varepsilon$. Pourquoi est-ce possible? Construisez une fonction ψ de classe C^1 sur [a,b] telle que $||f-\psi||_{a,b} \le 2\varepsilon$. Vous pourrez faire intervenir un entier $n \in \mathbb{N}^*$ tel que $\frac{b-a}{n} \le \alpha$ et poser $a_i = a + i \frac{b-a}{n}$ pour $i \in [0,n]$.
- **Q 5.** Montrez que E_1 est dense dans E_0 pour la norme uniforme.

II. Th. de Stone-Weierstrass dans E_1

Dans cette partie, on suppose que a=0 et b=1 pour simplifer. Soit f est une fonction de E_1 .

Pour
$$n \in \mathbb{N}^*$$
 et $x \in [0,1]$, on pose $B_n(x) = \sum_{k=0}^n \binom{n}{k} f\left(\frac{k}{n}\right) x^k (1-x)^{n-k}$.

- **Q 6.** Dans les cas particuliers suivants, donnez une expression simplifiée de $B_n(x)$:
 - f est la fonction constante égale à 1;
 - f est la fonction $x \mapsto x$;
 - f est la fonction $x \mapsto x^2$.

Vérifiez dans chacun de ces trois cas que la suite de fonctions (B_n) converge uniformément vers f sur [0,1].

Q 7. Montrez que pour tout $n \in \mathbb{N}^*$ et $x \in [0,1]$, $\sum_{k=0}^{n} \binom{n}{k} (k-nx)^2 x^k (1-x)^{n-k} = nx(1-x)$.

On revient au cas général.

Q 8. Justifiez l'existence de $K = \sup_{[0,1]} |f'|$.

Q 9. Montrez que pour tout $n \in \mathbb{N}^*$ et $x \in [0,1]$, $|f(x) - B_n(x)| \leq \frac{K}{n} \sum_{k=0}^n \binom{n}{k} |k - nx| x^k (1-x)^{n-k}$.

 $\mathbf{Q} \ \mathbf{10.} \quad \text{Pour } n \in \mathbb{N}^* \ \text{et} \ x \in [0,1], \ \text{on pose} \ I_n = \{k \in [\![0,n]\!] \ \ \big/ \ |k-nx| \geqslant \sqrt{n}\} \ \text{et} \ J_n = \{k \in [\![0,n]\!] \ \ \big/ \ |k-nx| < \sqrt{n}\}.$

a) Montrez que $\sum_{k \in J_n} \binom{n}{k} |k - nx| x^k (1-x)^{n-k} \leqslant \sqrt{n}$.

b) Montrez que $\sum_{k \in I_n} \binom{n}{k} |k - nx| x^k (1 - x)^{n-k} \leqslant \sqrt{n} x (1 - x) \leqslant \sqrt{n}.$

Q 11. Montrez que la suite de polynômes (B_n) converge uniformément vers f sur [0,1].

Q 12. Pourquoi, dans le cas général, peut-on affirmer que si a et b sont quelconques et $f \in E_1$, alors il existe une suite de polynômes (P_n) qui converge uniformément vers f sur [a,b]?

III. Th. de Stone-Weierstrass dans E_0

 ${f Q}$ 13. Montrez le théorème de Stone-Weierstrass : P est dense dans E_0 pour la norme infinie.

Problème 1

I.

Q 1. On note f la fonction définie par morceaux. Elle est évidemment de classe C^1 sur $[\alpha, \beta[$ et sur $[\beta, \gamma]$. Pour qu'elle le soit sur $[\alpha, \gamma]$, il faut et il suffit qu'elle soit continue en β et que sa dérivée f' le soit aussi.

Or $f(\beta) = \psi(\beta)$ et ψ est continue à droite en β , donc f l'est aussi. Et par continuité à gauche en β de la fonction φ , $\lim_{x \to \beta_{-}} f(x) = \lim_{x \to \beta_{-}} \varphi(x) = \varphi(\beta) = \psi(\beta) = f(\beta)$. Donc f est aussi continue à gauche en β . Au total, elle est continue en β .

On procède de même en β pour la fonction f', car $f'(\beta) = \psi'(\beta) = \varphi'(\beta)$.

Q 2. Par exemple, la fonction $x \mapsto \frac{A+B}{2} + \frac{A-B}{2} \cos\left(\pi \frac{x-\alpha}{\beta-\alpha}\right)$ convient.

Q 3. Pour alléger les notations, on pose $\phi = \Phi_{\alpha,\beta,f(\alpha),f(\beta)}$.

Soit $t \in [\alpha, \beta]$, alors par hypothèse, $|f(t) - f(\alpha)| \leq M$. En particulier, $|f(\beta) - f(\alpha)| \leq M$.

Donc
$$|f(t) - \phi(t)| \le |f(t) - f(\alpha)| + |f(\alpha) - \phi(t)| = |f(t) - f(\alpha)| + |\phi(\alpha) - \phi(t)| \le M + |\phi(\alpha) - \phi(t)|$$
.

Comme ϕ est monotone sur $[\alpha, \beta]$, alors $|\phi(\alpha) - \phi(t)| \leq |\phi(\beta) - \phi(\alpha)| = |f(\beta) - f(\alpha)| \leq M$.

Donc finalement, $|f(t) - \phi(t)| \leq 2M$.

Q 4. f est continue sur le segment [a, b], donc d'après le th. de Heine, elle est uniformément continue sur [a, b], ce qui justifie l'existence de δ .

On choisit un entier $n \in \mathbb{N}^*$ tel que $\frac{b-a}{n} \leqslant \alpha$ et on pose $a_i = a + i \frac{b-a}{n}$ pour $i \in [0, n]$. Remarque : c'est le point de départ de plusieurs démonstrations du cours de MP2I.

On définit alors la fonction ψ par morceaux sur [a,b] en posant : pour tout $i \in [0,n-1]$ et $t \in [a_i,a_{i+1}[$, on pose $\psi(t) = \Phi_{a_i,a_{i+1},f(a_i),f(a_{i+1})}$ et pour t=b, on pose $\psi(b) = f(b)$.

Alors par construction des fonctions Φ et d'après le question 1, ψ est de classe C^1 sur [a,b].

Et en travaillant sur chaque intervalle $[a_i, a_{i+1}]$, d'après la question 3, pour tout $t \in [a_i, a_{i+1}]$, $|f(t) - \psi(t)| \leq 2\varepsilon$. Donc pour tout $t \in [a, b]$, $|f(t) - \psi(t)| \leq 2\varepsilon$, ce qui signifie que $||f - \psi||_{a,b} \leq 2\varepsilon$.

Q 5. On a donc montré que pour tout $f \in E_0$, pour tout $\varepsilon > 0$, il existe $\psi \in E_1$ tel que $||f - \psi||_{a,b} \le 2\varepsilon$, ce qui est exactement la définition de la densité de E_1 dans E_0 .

II.

Q 6. Si f est la fonction constante égale à 1, alors B_n l'est aussi (formule du binôme). Donc la suite (B_n) converge uniformément sur [0,1] vers f.

Si f est la fonction $x \mapsto x$, alors $B_n(x) = \sum_{k=0}^n \binom{n}{k} \frac{k}{n} x^k (1-x)^{n-k}$. Cette somme peut être commencée à k=1 car le terme

d'indice 0 est nul. Or d'après la formule du capitaine, $k \binom{n}{k} = n \binom{n-1}{k-1}$ pour $k \leqslant 1$.

Donc il vient $B_n(x) = \sum_{k=1}^n \binom{n-1}{k-1} x^k (1-x)^{n-k} = x \sum_{j=0}^{n-1} \binom{n-1}{j} x^j (1-x)^{n-1-j} = x$. Donc la suite (B_n) converge uniformément sur [0,1] vers f.

Si f est la fonction $x \mapsto x^2$, alors $B_n(x) = \sum_{k=0}^n \binom{n}{k} \frac{k^2}{n^2} x^k (1-x)^{n-k}$. Cette somme peut être commencée à k=1 car le terme

d'indice 0 est nul. De la même façon, on obtient $B_n(x) = \sum_{k=1}^n \binom{n-1}{k-1} \frac{k}{n} x^k (1-x)^{n-k} = \frac{x}{n} \sum_{j=0}^{n-1} (j+1) \binom{n-1}{j} x^j (1-x)^{n-1-j}$.

Donc
$$B_n(x) = \frac{x}{n} \left(\sum_{j=0}^{n-1} j \binom{n-1}{j} x^j (1-x)^{n-1-j} + \sum_{j=0}^{n-1} \binom{n-1}{j} x^j (1-x)^{n-1-j} \right) = \frac{x}{n} \left(\sum_{j=1}^{n-1} (n-1) \binom{n-2}{j-1} x^j (1-x)^{n-1-j} + 1 \right)$$

Donc $B_n(x) = \frac{x}{n}((n-1)x+1) = \frac{n-1}{n}x^2 + \frac{1}{n}x$.

En particulier, $|x^2 - B_n(x)| = \frac{|x^2 - x|}{n} \leqslant \frac{2}{n}$: on a une majoration uniforme de $|f - B_n|$ par une suite qui tend vers 0, donc la suite (B_n) converge uniformément sur [0, 1] vers f.

$$\mathbf{Q} \ \mathbf{7.} \quad \sum_{k=0}^{n} \binom{n}{k} (k-nx)^2 x^k (1-x)^{n-k} = \sum_{k=0}^{n} \binom{n}{k} k^2 x^k (1-x)^{n-k} - 2nx \sum_{k=0}^{n} \binom{n}{k} k x^k (1-x)^{n-k} + n^2 x^2 \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} = \sum_{k=0}^{n} \binom{n}{k} k^2 x^k (1-x)^{n-k} - 2nx \sum_{k=0}^{n} \binom{n}{k} k x^k (1-x)^{n-k} + n^2 x^2 \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} = \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} + n^2 x^2 \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} = \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} + n^2 x^2 \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} = \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} + n^2 x^2 \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} = \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} + n^2 x^2 \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} = \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} + n^2 x^2 \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} = \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} + n^2 x^2 \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} = \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} + n^2 x^2 \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} = \sum_{k=0}^{n} \binom{n}{k} x^k (1-x$$

Ces trois sommes sont à un facteur près les trois sommes calculées précédemment.

Donc
$$\sum_{k=0}^{n} {n \choose k} (k-nx)^2 x^k (1-x)^{n-k} = n^2 \left(\frac{n-1}{n} x^2 + \frac{1}{n} x \right) - 2n^2 x \times x + n^2 x^2 = nx(1-x).$$

Q 8. f est de classe C^1 donc f' est continue sur le segment [0,1], donc d'après le th. des bornes atteintes, K existe.

Q 9.
$$f(x) - B_n(x) = f(x) \times \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} - \sum_{k=0}^n \binom{n}{k} f\left(\frac{k}{n}\right) x^k (1-x)^{n-k} = \sum_{k=0}^n \binom{n}{k} \left[f(x) - f\left(\frac{k}{n}\right)\right] x^k (1-x)^{n-k},$$

donc par inégalité triangulaire, $|f(x) - B_n(x)| \le \sum_{k=0}^n \binom{n}{k} |f(x) - f\left(\frac{k}{n}\right)| x^k (1-x)^{n-k}$.

Or f est K-lipschitzienne (par inégalité des accroissement finis), donc $|f(x) - B_n(x)| \le \sum_{k=0}^n \binom{n}{k} K \left| x - \frac{k}{n} \right| x^k (1-x)^{n-k}$.

Finalement,
$$|f(x) - B_n(x)| \leq \frac{K}{n} \sum_{k=0}^n \binom{n}{k} |k - nx| x^k (1-x)^{n-k}$$

Q 10.

a) Par définition de J_n , les termes de la somme $\sum_{k \in J_n} \binom{n}{k} |k - nx| x^k (1-x)^{n-k}$ sont tous plus petits que les termes de la somme $\sum_{k \in J_n} \binom{n}{k} \sqrt{n} x^k (1-x)^{n-k}$, donc $\sum_{k \in J_n} \binom{n}{k} |k - nx| x^k (1-x)^{n-k} \leqslant \sqrt{n} \sum_{k \in J_n} x^k (1-x)^{n-k}$. Comme on additionne des termes positifs, on a $\sum_{k \in J_n} \binom{n}{k} x^k (1-x)^{n-k} \leqslant \sum_{k \in [\![0,n]\!]} \binom{n}{k} x^k (1-x)^{n-k} = 1$,

donc
$$\sum_{k \in I_n} \binom{n}{k} |k - nx| x^k (1 - x)^{n-k} \leq \sqrt{n}$$
.

- b) Pour tout $k \in I_n$, $|k nx| \ge \sqrt{n} \ge 1$ donc $\sqrt{n}|k nx| \le |k nx|^2$, donc $\sum_{k \in I_n} \binom{n}{k} |k nx| x^k (1 x)^{n-k} \le \sum_{k \in I_n} \binom{n}{k} \frac{1}{\sqrt{n}} |k nx|^2 x^k (1 x)^{n-k} \le \frac{1}{\sqrt{n}} \sum_{k \in [0, n]} \binom{n}{k} |k nx|^2 x^k (1 x)^{n-k} = \frac{1}{\sqrt{n}} nx(1 x) = \sqrt{n}x(1 x) \le \sqrt{n} \text{ (car } x \in [0, 1] \text{ donc } 0 \le x(1 x) \le 1).$
- **Q 11.** D'après les deux questions précédentes, on a donc montré que pour tout $n \in \mathbb{N}^*$ et $x \in [0,1], |f(x) B_n(x)| \leqslant \frac{K}{n} \times 2\sqrt{n} = \frac{2K}{\sqrt{n}}$

Autrement dit $||f - B_n||_{0,1} \le \frac{2K}{\sqrt{n}}$: la suite de polynômes (B_n) converge uniformément vers f sur [0,1].

Q 12. Pour passer d'un segment [a,b] quelconque au segment [0,1], il suffit de composer par la transformation $x\mapsto \frac{x-a}{b-a}$. Soit $f\in E_1$, alors $g:t\mapsto f\left(a+t(b-a)\right)$ est continue sur [0,1] donc il existe une suite de polynômes B_n qui converge uniformément sur [0,1] vers g, donc la suite de polynômes $\left(x\mapsto B_n\left(\frac{x-a}{b-a}\right)\right)_{n\in\mathbb{N}^*}$ converge uniformément vers f sur [a,b].

III.

Q 13. Soit $f \in E_0$ et $\varepsilon > 0$.

D'après la partie 1, il existe $g \in E_1$ tel que $||f - g||_{a,b} \leq \varepsilon$.

Puis g étant dans E_1 , d'après la partie 2, il existe un polynôme p tel que $\|g-p\|_{a,b} \leqslant \varepsilon$.

Donc $||f - p||_{a,b} \leqslant 2\varepsilon$.

Ceci prouve que P est dense dans E_0 .