Exercice

On veut résoudre l'équation $5^m - 2^n = 1$ d'inconnue $(m, n) \in \mathbb{N}^2$.

- a) Déterminez les solutions telles que $n \leq 2$. Désormais, on cherche les solutions telles que $n \geq 3$. Soit (m, n) une solution telle que $n \geq 3$.
- b) En travaillant modulo 8, montrez que m est pair.
- c) Montrez alors que $5^m 1$ est divisible par 3.
- d) Concluez : quelles sont les solutions?

Problème 1 - Deux équations de Mordell

On appelle équations de Mordell les équations diophantiennes de la forme : $y^2 = x^3 + k$ d'inconnue $(x, y) \in \mathbb{Z}^2$ avec $k \in \mathbb{Z}$ fixé. On sait beaucoup de choses sur ces équations, en particulier qu'elles possèdent toujours un nombre fini de solutions — mais c'est un résultat difficile. Ce devoir se donne pour objectif modeste de vous aider à en résoudre deux.

On rappelle à toutes fins utiles que pour tous $a,b \in \mathbb{N}$ premiers entre eux, si ab est un cube parfait alors a et b en sont aussi.

Partie 1 - Équation de Mordell
$$y^2 = x^3 + 16$$

Question 1) Soit $(x,y) \in \mathbb{Z}^2$. On suppose que $y^2 = x^3 + 16$ et que y est impair.

- a) Montrez qu'il existe deux entiers impairs a, b tels que $y + 4 = a^3$ et $y 4 = b^3$.
- b) Montrez que a = b + 8, puis concluez.

Question 2) Soit $(x,y) \in \mathbb{Z}^2$. On suppose que : $y^2 = x^3 + 16$ et que y est pair.

- a) Montrez que x et y sont divisibles par 4. On peut donc se donner deux entiers x' et y' pour lesquels x=4x' et y=4y'.
- b) Montrez que y' est impair. On peut donc se donner un entier n pour lequel y'=2n+1.
- c) Montrez que n et n+1 sont des cubes parfaits, puis déduisez-en x.

Question 3) Résolvez l'équation de Mordell : $y^2 = x^3 + 16$ d'inconnue $(x, y) \in \mathbb{Z}^2$.

Partie 2 - Équation de Mordell
$$y^2 = x^3 - 5$$

Question 1) Soit $(x,y) \in \mathbb{Z}^2$. On suppose que : $y^2 = x^3 - 5$.

- a) Étudiez la parité de y et calculer le reste de la division euclidienne de x par 4.
- b) Montrez que $x^2 + x + 1$ possède un facteur premier p congru à 3 modulo 4.

Question 2)

- a) Montrez qu'il existe $n \in \mathbb{Z}$ tel que $n^2 \equiv -1$ [p].
- b) Calculez n^{p-1} modulo p de deux manières différentes, puis concluez.

Problème 2 - Une équation diophantienne

On veut résoudre l'équation $x^2 + 2^x = y^2$ d'inconnue $(x, y) \in \mathbb{N}^2$.

Question 1) Déterminez les solutions (x, y) telles que $x \in [0, 10]$.

Dans toute la suite, on s'intéresse aux solutions (x, y) telles que x > 0

Question 2) Montrez qu'il existe
$$(\alpha, \beta) \in \mathbb{N}^2$$
 tel que
$$\begin{cases} y - x &= 2^{\alpha} \\ y + x &= 2^{\beta} \\ x &= \alpha + \beta \end{cases}$$
. Vérifiez que $\beta > \alpha$.

Question 3) Montrez que $\alpha \ge 1$, puis déduisez-en que $2^{\beta-1} - \beta = 2^{\alpha-1} + \alpha$.

Question 4) On suppose que $\alpha = 1$ dans cette question.

- a) On pose $f: t \mapsto 2^{t-1} t$. Étudiez les variations de f sur $[3, +\infty[$.
- b) Aboutissez à une contradiction.

Question 5) Justifiez que x et y sont pairs, puis que $\beta \geqslant \alpha + 2$.

Question 6) On suppose que $\alpha \geqslant 3$.

- a) Montrez que $2^{\alpha+1} \alpha 2 > 2^{\alpha-1} + \alpha$.
- b) En réutilisant la fonction f, about issez à une contradiction.

Question 7) Concluez : quel est l'ensemble des solutions de l'équation proposée?

Exercice

- a) Les cas n=0 et n=1 ne donnent aucune solution. Le cas n=2 donne la solution (m,n)=(1,2):5-4=1.
- b) Si maintenant on suppose $n \ge 3$, alors $5^m \equiv 1$ [8] : or $5^2 \equiv 1$ [8] donc en écrivant la division euclidienne de m par 2, on a m = 2q + r où $r \in \{0, 1\}$ puis $5^m = (5^2)^q \times 5^r \equiv 5^r \equiv 1$ [8] donc r = 0, autrement dit m est pair.
- c) m est pair donc il existe $q \in \mathbb{N}$ tel que m = 2q, donc $5^m 1 = 25^q 1$; or $25 \equiv 1$ [3] donc $25^q 1 \equiv 0$ [3], donc $5^m 1$ est divisible par 3.
- d) Or on a donc $25^q 1 = 2^n$, on en déduit que 3 divise 2^n : impossible.

Conclusion : il n'existe aucune solution telle que $n \ge 3$, donc la seule solution est le couple (m, n) = (1, 2).

Problème 1

Partie 1

Question 1)

a) $y^2 = x^3 + 16$ donc $x^3 = (y - 4)(y + 4)$

S'il existe p premier qui divise y-4 et y+4, alors p divise (y+4)-(y-4)=8, donc p=2. Or y est impair, donc y+4 l'est aussi, donc 2 ne divise pas y+4: contradiction. Donc y-4 et y+4 sont premiers entre eux.

Comme leur produit est un cube, alors eux-mêmes sont des cubes d'après un théorème du cours : il existe $(a,b) \in \mathbb{Z}^3$ tel que $y+4=a^3$ et $y-4=b^3$.

Puisque y + 4 est impair, alors a est impair aussi, ainsi que b.

b) On peut factoriser : $(y+4)-(y-4)=8=a^3-b^3=(a-b)(a^2+ab+b^2)$. Or comme a et b sont impairs, a^2 , b^2 et ab sont impairs donc a^2+ab+b^2 est impair et divise 8 donc a^2+ab+b^2 vaut 1 ou -1. De plus, $a^2+ab+b^2=\left(a+\frac{b}{2}\right)^2+3\frac{b^2}{4}\geqslant 0$, donc $a^2+ab+b^2=1$ et donc a-b=8.

Donc $1 = a^2 + ab + b^2 = 3b^2 + 24b + 64$ donc $b^2 + 8b + 21 = 0$. Or ce trinôme du second degré n'a pas de racines réelles : contradiction.

L'équation de Mordell $y^2 = x^3 + 16$ n'a donc pas de solution (x, y) telle que y soit impair.

Question 2

a) y est pair, donc 4 divise y^2 donc 4 divise $x^3 + 16$ donc aussi x^3 . Donc x est pair. On note y = 2a et x = 2b et on reporte dans l'équation : $a^2 = 2b^3 + 4$, donc a^2 est pair, donc a l'est aussi. On peut noter a = 2y', puis on reporte : $2y'^2 = b^3 + 2$, donc b^3 est pair, donc b l'est aussi. On peut noter b = 2x'.

Donc finalement, x = 4x' et y = 4y'.

- b) Il vient donc l'égalité : $y'^2 = 4x'^2 + 1$. Donc y'^2 est impair et y' l'est aussi.
- c) On peut noter y' = 2n + 1 et on reporte : $n^2 + n = x'^3$, ou encore $n(n+1) = x'^3$.

Or n et n+1 sont premiers entre eux, donc d'après un th. du cours, n et n+1 sont deux cubes. Il existe $(p,q) \in \mathbb{Z}^3$ tel que $n+1=p^3$ et $n=q^3$.

Comme n+1 > n, alors p > q, puis $1 = (n+1) - n = (p-q)(p^2 + pq + q^2)$, donc on obtient p-q = 1 et $p^2 + pq + q^2 = 1$. Puis $3q^3 + 3q = 0$ donc q = 0 ou q = -1, donc n = 0 ou n = -1 donc x = 4x' = 0.

Question 3) x = 0 donc il vient $y^2 = 16$ donc y = 4 ou y = -4

L'équation de Mordell $y^2 = x^3 + 16$ a donc deux solutions : les couples (x, y) = (0, 4) et (x, y) = (0, -4).

Partie 2

Question 1)

a) Si y est impair, alors $y^2 \equiv 1$ [4] donc $x^3 \equiv 2$ [4]. Or une petite vérification rapide montre qu'un cube ne peut être congru qu'à 0, 1 ou 3 modulo 4 ($0^3 = 0$, $1^3 = 1$, $2^3 = 8 \equiv 0$ [4] et $3^3 \equiv (-1)^3 \equiv -1$ [4]), d'où une contradiction. Donc y est pair. On note y = 2n.

Il vient alors x impair, donc le reste de la division euclidienne de x par 4 est 1 ou 3.

Si x = 4q + 3, alors $x^3 = 64q^3 + 144q^2 + 36q + 27 = 4p^2 + 5$ donc $32q^3 + 72q^2 + 18q = 2p^2 - 11$, ce qui est absurde car 2 ne divise pas 11.

Donc le reste de la division euclidienne de x par 4 est 1.

b) $x \equiv 1$ [4] donc $x^2 + x + 1 \equiv 3$ [4]. Or les nombres premiers sont 2 (qui ne divise pas $x^2 + x + 1$), ou congrus à 1 modulo 4 ou congrus à 3 modulo 4.

Si tous les facteurs premiers de $x^2 + x + 1$ sont congrus à 1 modulo 4, alors lui-même est congru à 1 modulo 4. Donc $x^2 + x + 1$ possède au moins un facteur premier congru à 3 modulo 4.

Question 2)

- a) $x^2 + x + 1 \equiv 0$ [p] donc $x^3 1 = (x 1)(x^2 + x + 1) \equiv 0$ [p] donc $y^2 + 4 \equiv 0$ [p]. Or y = 2n, donc p divise $y^2 + 4 = 4(n^2 + 1)$. Comme p est premier différent de 2, on en déduit que p divise $n^2 + 1$, autrement dit $n^2 \equiv -1$ [p].
- b) D'une part, n est premier avec p (sinon p diviserait n donc n^2) donc d'après le petit th. de Fermat, $n^{p-1} \equiv 1$ [p].

D'autre part, $n^{p-1} = (n^2)^{(p-1)/2}$ (car p est impair) donc $n^{p-1} \equiv (-1)^{(p-1)/2}$ [p]. Or $p \equiv 3$ [4] donc $\frac{p-1}{2}$ est un entier impair, donc $(-1)^{(p-1)/2} = -1$, donc $n^{p-1} \equiv -1$ [p].

On obtient donc $1 \equiv -1$ [p], donc p divise 2 : contradiction car p est impair.

Conclusion : l'équation de Mordell $y^2 = x^3 - 5$ n'a pas de solutions.

Problème 2

Question 1) On essaye systématiquement les valeurs de x de 0 à 10: on trouve (x,y)=(0,1) et (x,y)=(6,10).

Question 2)
$$x^2 + 2^x = y^2 \iff 2^x = y^2 - x^2 = (y - x)(y + x)$$
.

Le seul facteur premier de la décomposition primaire de 2^x est 2 donc il en va de même pour les décompositions primaires de y-x et y+x, qui sont des diviseurs de 2^x .

Donc il existe $(\alpha, \beta) \in \mathbb{N}^2$ tel que $\left\{ \begin{array}{lcl} y-x & = & 2^{\alpha} \\ y+x & = & 2^{\beta} \end{array} \right.$, et pour avoir $2^x=2^{\alpha} \times 2^{\beta}$, il faut bien sûr que $x=\alpha+\beta$.

Donc on obtient $x = 2^{\beta-1} - 2^{\alpha-1}$ et $y = 2^{\beta-1} + 2^{\alpha-1}$.

Puisque x > 0, il vient $\beta - 1 > \alpha - 1$ donc $\beta > \alpha$.

Question 3) Si $\alpha = 0$, alors $x = 2^{\beta - 1} - \frac{1}{2}$ n'est pas un entier, donc $\alpha \geqslant 1$.

Puis on a aussi $x = \alpha + \beta = 2^{\beta-1} - 2^{\alpha-1}$, ce qui donne $2^{\beta-1} - \beta = 2^{\alpha-1} + \alpha$.

Question 4)

- a) Pour tout $t \in \mathbb{R}$, $f(t) = e^{(t-1)\ln 2} t$ donc f est dérivable sur \mathbb{R} . Pour tout $t \in \mathbb{R}$, $f'(t) = \ln 2 \times 2^{t-1} - 1$ donc si $t \ge 3$, alors $\ln 2 \times 2^{t-1} \ge 4 \ln 2 > 1$ donc f'(t) > 0. La fonction f est donc strictement croissante sur $[3, +\infty[$.
- b) Si $\alpha = 1$, alors $2^{\beta 1} \beta = 2$, c'est-à-dire $f(\beta) = 2$. Comme $\beta > \alpha$, on essaye avec $\beta = 2$: ça ne marche pas, puis avec $\beta = 3$, non plus, puis avec $\beta \geqslant 4$, on a $f(\beta) \geqslant f(4) = 5$. Conclusion: il n'existe aucune valeur de $\beta \in \mathbb{N}$ telle que $f(\beta) = 2$, d'où la contradiction.

Question 5) Puisque $\alpha \geqslant 2$, alors $\beta \geqslant 3$, donc $2^{\beta-1}$ et $2^{\alpha-1}$ sont pairs, donc x et y le sont aussi.

Et comme $x = \beta + \alpha$, on en déduit que α et β ont la même parité. Mais comme $\beta \geqslant \alpha + 1$ et que $\alpha + 1$ n'a pas la même parité que α , on en déduit que $\beta \geqslant \alpha + 2$.

Question 6)

- a) On pose $g: t \mapsto 2^{t+1} 2^{t-1} 2t 2$. g est dérivable sur \mathbb{R} et pour tout $t \in \mathbb{R}$, $g'(t) = \ln 2(2^{t+1} 2^{t-1}) 2 = 3 \ln 2 \times 2^{t-1} 2$.
 - Si $t \ge 3$, alors $g'(t) \ge 12 \ln 2 2 > 0$ donc g est strictement croissante sur $[3, +\infty[$.
 - Or g(3) = 16 4 6 2 = 4 > 0 donc pour tout $t \ge 3$, g(t) > 0, et comme $\alpha \ge 3$, on a donc $g(\alpha) > 0$, ce qu'on voulait montrer.
- b) Comme $\beta \geqslant \alpha + 2 \geqslant 3$ et que f est croissante sur $[3, +\infty[$, on en déduit que $f(\beta) = 2^{\beta-1} \beta \geqslant f(\alpha+2) = 2^{\alpha+1} \alpha 2 > 2^{\alpha-1} + \alpha$, ce qui contredit l'égalité de la question 3.

Question 7) Quand on cherche les solutions telles que x>0, on voit que les cas $\alpha=0$, $\alpha=1$ et $\alpha\geqslant 3$ sont impossibles, il reste donc le cas $\alpha=2$, qui donne l'équation $2^{\beta-1}-\beta=4$, qui a pour seule solution $\beta=4$ (unique solution car f est strictement croissante sur $[3,+\infty[)$, autrement dit $x=2^3-2^1=6$ et $y=2^3+2^1=10$, c'est-à-dire la solution trouvée dans la question 1.

Conclusion: il y a exactement deux couples solutions qui sont ceux trouvés initialement.