Problème 1

Soit a une suite réelle telle que $a_0 \neq 0$ et $(\alpha, \beta) \in \mathbb{R}^2$.

On définit la suite u par récurrence : $u_0 = \alpha$, $u_1 = \beta$ et pour tout $n \in \mathbb{N}$, $u_{n+2} = u_{n+1} + a_n u_n$.

I. Un cas particulier

Dans cette partie, on suppose que la suite a est à termes positifs et que α et β sont positifs.

Si $\alpha = \beta = 0$, alors une récurrence immédiate prouve que u est la suite nulle, suite sans mystère. On suppose donc qu'au moins un des deux réels α ou β est strictement positif.

Q 1.

- a) Précisez la monotonie de la suite u à partir du rang 1.
- b) Montrez que pour tout $n \in \mathbb{N}$, $u_{n+2} > 0$.

Q 2.

- a) Pour $x \in \mathbb{R}_+$, comparez 1 + x et e^x . Déduisez-en que pour tout $n \in \mathbb{N}^*$, $u_{n+2} \leqslant u_{n+1}e^{a_n}$.
- b) Montrez que pour tout $n \ge 2$, $u_n \le u_2 \exp\left(\sum_{k=1}^{n-2} a_k\right)$.
- **Q 3.** Montrez que si la série $\sum_{n\geq 0} a_n$ converge, alors la suite u converge.
- \mathbf{Q} 4. Réciproquement, on suppose que la suite u converge.
 - a) Justifiez que sa limite ℓ est strictement positive.
 - b) Montrez que la série $\sum_{n\geq 0} a_n u_n$ converge.
 - c) Déduisez-en que la série $\sum_{n\geqslant 0}a_n$ converge.

II.

Dans cette partie, on suppose que la série $\sum_{n\geqslant 0}a_n$ est absolument convergente et toujours que l'un des réels α ou β est non nul, mais on ne suppose rien à propos des signes.

On définit la suite v par récurrence : $v_0 = |u_0|$, $v_1 = |u_1|$ et pour tout $n \in \mathbb{N}$, $v_{n+2} = v_{n+1} + |a_n|v_n$.

- **Q 5.** Pour tout $n \in \mathbb{N}$, comparez v_n et $|u_n|$.
- **Q 6.** Justifiez que la suite v converge. Déduisez-en que la série $\sum_{n\geqslant 0}a_nv_n$ est absolument convergente.
- \mathbf{Q} 7. Montrez que la suite u converge.

On vient donc de montrer que si la série $\sum_{n\geqslant 0}a_n$ est absolument convergente, alors la suite u converge quelles que soient ses valeurs initiales u_0 et u_1 .

Problème 2

Dans tout le problème, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} et E désigne un \mathbb{K} -espace vectoriel de dimension $n \geq 1$.

Q 1. Soit $f \in \mathcal{L}(E)$. On suppose qu'il existe $k \in \mathbb{N}$ tel que $\operatorname{Ker} f^k = \operatorname{Ker} f^{k+1}$. Montrez que pour tout $\ell \geqslant k$, $\operatorname{Ker} f^{\ell} = \operatorname{Ker} f^{\ell+1}$.

Un endomorphisme u de E est dit nilpotent quand il existe $k \in \mathbb{N}$ tel que $u^k = 0$.

Dans la suite, u est un endomorphisme nilpotent de E, non nul.

- \mathbf{Q} 2. Soit u un endomorphisme nilpotent de E.
 - a) Justifiez l'existence du plus petit entier k tel que $u^k = 0$: on l'appelle le nilindice de u, on le note r dans la suite.

- b) Montrez que $\{0\} \subsetneq \operatorname{Ker} u \subsetneq \operatorname{Ker} u^2 \subsetneq \ldots \subsetneq \operatorname{Ker} u^r$.
- c) Déduisez-en que $r \leq n$ et que $u^n = 0$.

Pour
$$k \in \mathbb{N}^*$$
, on pose $J_k = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \in \mathscr{M}_k(\mathbb{K})$. On remarquera que $J_1 = (0) \in \mathscr{M}_1(\mathbb{K})$.

Par définition de $r, u^{r-1} \neq 0$: on peut choisir un vecteur x de E tel que $y = u^{r-1}(x) \neq 0$. On choisit aussi une forme linéaire φ telle que $\varphi(y) \neq 0$. Puis on pose pour tout $i \in [0, r-1]$, $\psi_i = \varphi \circ u^i$.

- **Q 3.** On pose alors $F = \text{vect}(x, u(x), \dots, u^{r-1}(x))$. Montrez que F est un s.e.v de E de dimension r et stable par u. Quelle est la matrice dans la base $(x, u(x), \dots, u^{r-1}(x))$ de l'endomorphisme induit par u dans F?
- **Q 4.** Montrez que $(\psi_0, \dots, \psi_{r-1})$ est une famille libre de formes linéaires sur E.
- **Q 5.** On pose $G = \bigcap_{i=0}^{r-1} \operatorname{Ker} \psi_i$. Montrez que G est un supplémentaire de F dans E et qu'il est stable par u.
- **Q 6.** Montrez par récurrence sur n qu'il existe un base \mathscr{B} de E telle que mat u soit diagonale par blocs, chaque bloc étant une matrice J_k .

Problème 1

I.

Q 1.

a) Il est facile de montrer par récurrence double que pour tout $n \in \mathbb{N}$, $u_n \geqslant 0$.

Soit Pr(n) le prédicat « $u_n \ge 0$ ».

Par hypothèse, les propositions Pr(0) et Pr(1) sont vraies.

Si $\Pr(n)$ et $\Pr(n+1)$ sont vraies, alors $u_n \geqslant 0$ et $u_{n+1} \geqslant 0$. Or $a_n \geqslant 0$ donc $u_{n+2} = u_{n+1} + a_n u_n \geqslant 0$. Donc $\Pr(n+2)$ est vraie.

D'après le principe de récurrence, pour tout $n \in \mathbb{N}$, $u_n \ge 0$.

Donc pour tout $n \in \mathbb{N}$, $a_n u_n \ge 0$ donc $u_{n+2} \ge u_{n+1}$. Autrement dit, la suite u est croissante à partir du rang 1.

b) $u_2 = \beta + a_0 \alpha$, or $a_0 > 0$ et l'un des deux nombres α ou β est strictement positif donc $u_2 > 0$.

Or la suite u est croissante à partir du rang 1, donc pour tout $n \in \mathbb{N}$, $n+2 \ge 2$ donc $u_{n+2} \ge u_2 > 0$.

Q 2.

a) On sait que pour tout $x \ge 0$, $\ln(1+x) \le x$ donc comme exp est croissante, $1+x \le e^x$.

Pour tout n > 0, $u_{n+2} = u_{n+1} + a_n u_n \le u_{n+1} + a_n u_{n+1}$ car $a_n \ge 0$ et $u_{n+1} \ge u_n \ge 0$.

Donc $u_{n+2} \le u_{n+1}(1+a_n) \le u_{n+1}e^{a_n}$.

b) Par récurrence sur n. Soit Pr(n) le prédicat « $u_n \leq u_2 \exp\left(\sum_{k=1}^{n-2} a_k\right)$ ».

 $\Pr(2)$ est vraie, car dans le cas n=2, la somme vide $\sum_{k=1}^{n-2} a_k$ vaut 0 donc $u_2 \exp\left(\sum_{k=1}^{n-2} a_k\right) = u_2$.

Si Pr(n) est vraie (où $n \ge 2$), alors

$$u_{n+1} \leqslant u_n e^{a_{n-1}} \leqslant u_2 \exp\left(\sum_{k=1}^{n-2} a_k\right) \times \exp a_{n-1} = u_2 \exp\left(\sum_{k=1}^{n-2} a_k + a_{n-1}\right) = u_2 \exp\left(\sum_{k=1}^{n-1} a_k\right).$$

Donc Pr(n+1) est vraie.

D'après le principe de récurrence, pour tout $n \geqslant 2$, $u_n \leqslant u_2 \exp{\left(\sum_{k=1}^{n-2} a_k\right)}$.

Q 3. Si la série $\sum_{n\geqslant 0}a$ converge, alors comme c'est une série à termes positifs, la suite de ses sommes partielles est majorée :

il existe $M \in \mathbb{R}_+$ tel que pour tout $n \in \mathbb{N}$, $\sum_{k=1}^n a_k \leqslant \sum_{k=0}^n a_k \leqslant M$.

Donc d'après l'inégalité précédente, pour tout $n \ge 2$, $u_n \le u_2 e^M$.

La suite u est donc croissante à partir du rang 2 et majorée à partir du rang 2 par u_2e^M donc elle converge d'après le th. de la limite monotone.

Q 4.

- a) la suite u est croissante et son terme de rang 2 est strictement positif donc sa limite ℓ vérifie : $\ell \geqslant u_2 > 0$.
- b) La suite u converge donc la série télescopique associée converge : $\sum_{n\geqslant 0}u_{n+2}-u_{n+1}$ converge.

Autrement dit la série $\sum_{n\geq 0} a_n u_n$ converge.

c) a et u sont deux suites positives et $u_n \to \ell \neq 0$ donc $u_n \sim \ell$, donc $a_n u_n \sim \ell u_n$.

Par comparaison de séries à termes positifs, la série $\sum_{n\geqslant 0}\ell u_n$ converge donc la série $\sum_{n\geqslant 0}u_n=\frac{1}{\ell}\sum_{n\geqslant 0}\ell u_n$ converge.

1

II.

Q 5. Par récurrence double, on montre que pour tout $n \in \mathbb{N}$, $|u_n| \leq v_n$.

Soit Pr(n) le prédicat « $|u_n| \leq v_n$ ».

Par hypothèse, les propositions Pr(0) et Pr(1) sont vraies.

Si Pr(n) et Pr(n+1) sont vraies, alors $|u_n| \le v_n$ et $|u_{n+1}| \le v_{n+1}$. Or $|u_{n+2}| = |u_{n+1} + a_n u_n| \le |u_{n+1}| + |a_n| \cdot |u_n|$ donc $|u_{n+2}| \le v_{n+1} + |a_n| v_n = v_{n+2}$.

Donc Pr(n+2) est vraie.

D'après le principe de récurrence, pour tout $n \in \mathbb{N}$, $u_n \ge 0$.

Q 6. On applique la partie 1 à la suite v qui vérifie la relation de récurrence $v_{n+2} = v_{n+1} + b_n v_n$ (en posant $b_n = |a_n| \ge 0$), sachant qu'on a $b_0 \ne 0$, $v_0 = |\alpha| \ge 0$, $v_1 = |\beta| \ge 0$ et que l'un des deux est non nul.

Comme la série $\sum b_n$ est convergente par hypothèse (la série $\sum a_n$ est absolument convergente), d'après la question 3 de la partie 1, la suite v est convergente.

Donc la série télescopique associée est convergente : la série $\sum_{n\geq 0} (v_{n+2}-v_{n+1})$ converge, autrement dit la série

 $\sum_{n\geqslant 0} |a_n|v_n \text{ converge. Or la suite } v \text{ est positive donc la série } \sum_{n\geqslant 0} |a_nv_n| \text{ converge, c'est-à-dire la série } \sum_{n\geqslant 0} a_nv_n \text{ est absolument convergente.}$

Q 7. On sait que pour tout $n \in \mathbb{N}$, $|u_n| \leq v_n$, donc $|a_n u_n| \leq |a_n| v_n = |a_n v_n|$. Or on a montré que la série $\sum_{n \geq 0} a_n v_n$ est

absolument convergente, donc par comparaison de séries à termes positifs, la série $\sum_{n\geqslant 0} |a_n u_n|$ est convergente, i.e.

la série $\sum_{n > 0} a_n u_n$ est absolument convergente, donc convergente.

Autrement dit, la série télescopique $\sum_{n\geqslant 0}(u_{n+2}-u_{n+1})$ converge. Ceci permet donc de conclure que la suite u converge.

Problème 2

Q 1. Soit $\mathscr{P}(\ell)$ le prédicat « Ker $f^{\ell} = \operatorname{Ker} f^{\ell+1}$ ».

Par hypothèse, $\mathscr{P}(k)$ est vraie.

Si $\mathscr{P}(\ell)$ est vraie, alors d'abord on remarque que l'inclusion $\operatorname{Ker} f^{\ell+1} \subset \operatorname{Ker} f^{\ell+2}$ est toujours vraie sans condition.

Ensuite, pour tout $x \in \operatorname{Ker} f^{\ell+2}$, $f^{\ell+2}(x) = 0$ donc $f^{\ell+1}(f(x)) = 0$ donc $f(x) \in \operatorname{Ker} f^{\ell+1}$. D'après l'hypothèse de récurrence, on en déduit que $f(x) \in \operatorname{Ker} f^{\ell}$, donc $f^{\ell}(f(x)) = 0$, autrement dit $f^{\ell+1}(x) = 0$, donc $x \in \operatorname{Ker} f^{\ell+1}$. Ceci prouve donc l'inclusion réciproque $\operatorname{Ker} f^{\ell+2} \subset \operatorname{Ker} f^{\ell+1}$.

On a donc les deux inclusions en sens inverse, d'où l'égalité $\operatorname{Ker} f^{\ell+1} = \operatorname{Ker} f^{\ell+2}$. Donc $\mathscr{P}(\ell+1)$ est vraie.

D'après le principe de récurrence, pour tout $l \ge k$, $\mathscr{P}(\ell)$ est vraie.

Q 2.

- a) L'ensemble $\{k \in \mathbb{N} \ / \ u^k = 0\}$ est une partie non vide de \mathbb{N} , donc possède un minimum d'après le propriété fondamentale de \mathbb{N} .
- b) Les inclusions sont évidentes, il reste à montrer qu'elles sont strictes, autrement dit qu'il n'y a jamais égalité dans cette suite de noyaux.

Par l'absurde, s'il existe un $k \le r-1$ tel que Ker $f^k = \text{Ker } f^{k+1}$, alors d'après \mathbf{Q} 1, pour tout $\ell \ge k$, Ker $f^{\ell+1} = \text{Ker } f^{\ell}$, ce qui signifie que la suite des noyaux est stationnaire à partir du rang k. Donc Ker $f^k = \text{ker } f^{k+1} = \ldots = \text{Ker } f^r = E$ (car $f^r = 0$). Donc $f^k = 0$, ce qui contredit la définition de r.

Donc les inclusions jusqu'au rang r sont strictes.

c) On en déduit que $0 < \dim \operatorname{Ker} f < \dim \operatorname{Ker} f^2 < \ldots < \dim \operatorname{Ker} f^r = n$.

Donc on a successivement : dim Ker $f \ge 1$, puis dim Ker $f^2 \ge 2$, ..., dim Ker $f^r \ge r$, ce qui donne $r \le n$.

Donc $u^n = u^r \circ u^{n-r} = 0 \circ u^{n-r} = 0$.

Q 3. $u(F) = \text{vect}(u(x), u^2(x), \dots, u^r(x)) = \text{vect}(u(x), u^2(x), \dots, u^{r-1}(x))$ car $u^r(x) = 0$. Donc $u(F) \subset F$, autrement dit F est stable par u.

On montre que la famille $(x, u(x), \dots, u^{r-1}(x))$ est libre.

Soit
$$(\alpha_0, \dots, \alpha_{r-1}) \in \mathbb{C}^r$$
 tel que $\sum_{i=0}^{r-1} \alpha_i u^i(x) = 0$.

On pose $\mathscr{P}(k)$ le prédicat « $\alpha_0 = \ldots = \alpha_k = 0$ ».

Alors en appliquant u^{r-1} , on obtient $\sum_{i=0}^{r-1} \alpha_i u^{i+r-1}(x) = 0$ et comme $u^r = 0$, il reste juste $\alpha_0 y = 0$; or $y \neq 0$ donc $\alpha_0 = 0$. Donc $\mathscr{P}(0)$ est vraie.

Si on suppose que $\mathscr{P}(k)$ est vraie (pour $0 \leqslant k \leqslant r-2$), alors l'équation devient $\sum_{i=k+1}^{r-1} \alpha_i u^i(x) = 0$. Donc en appliquant

$$u^{r-2-k}$$
, il vient $\sum_{i=k+1}^{r-1} \alpha_i u^{i+r-2-k}(x) = 0$, soit $\alpha_{k+1}y = 0$, donc $\alpha_{k+1} = 0$.

Donc $\mathcal{P}(k+1)$ est vraie.

D'après le principe de récurrence, pour tout $k \in [0, r-1]$, $\mathscr{P}(k)$ est vraie, donc $\alpha_0 = \ldots = \alpha_{r-1} = 0$.

Donc F est un espace de dimension r.

Dans la base $(x, u(x), \dots, u^{r-1}(x))$, la matrice de l'endomorphisme induit par u dans F est la matrice J_r .

Q 4. On note d'abord que $\psi_i(u^j(x)) = \varphi(u^{i+j}(x)) = 0$ si $i+j \geqslant r$, et $\psi_i(u^j(x)) = \varphi(y) \neq 0$ si i+j=r-1.

Soit
$$(\alpha_0, \dots, \alpha_{r-1}) \in \mathbb{C}^r$$
 tel que $\sum_{i=0}^{r-1} \alpha_i \psi_i = 0$.

On pose $\mathscr{P}(k)$ le prédicat « $\alpha_0 = \ldots = \alpha_k = 0$ ».

Alors en évaluant en $u^{r-1}(x)$, on obtient $\sum_{i=0}^{r-1} \alpha_i \psi_i(u^{r-1}(x)) = 0$ et d'après la remarque précédente, il reste juste $\alpha_0 \psi_0(u^{r-1}(x)) = \alpha_0 \varphi(y) = 0$, or $\varphi(y) \neq 0$ donc $\alpha_0 = 0$. Donc $\mathscr{P}(0)$ est vraie.

Si on suppose que $\mathscr{P}(k)$ est vraie (pour $0 \leqslant k \leqslant r-2$), alors l'équation devient $\sum_{i=k+1}^{r-1} \alpha_i u^i(x) = 0$. Donc en évaluant en

$$u^{r-2-k}, \text{ il vient } \sum_{i=k+1}^{r-1} \alpha_i \psi_i(u^{r-2-k}(x)) = 0, \text{ soit } \alpha_{k+1} \psi_{k+1}(u^{r-2-k}(x)) = \alpha_{k+1} \varphi(y) = 0, \text{ or } \varphi(y) \neq 0 \text{ donc } \alpha_{k+1} = 0.$$

Donc $\mathcal{P}(k+1)$ est vraie.

D'après le principe de récurrence, pour tout $k \in [0, r-1]$, $\mathscr{P}(k)$ est vraie, donc $\alpha_0 = \ldots = \alpha_{r-1} = 0$. La famille $(\psi_0, \ldots, \psi_{r-1})$ est donc libre.

Q 5. $(\psi_0, \dots, \psi_{r-1})$ est une famille libre de formes linéaires sur E, donc $G = \bigcap_{i=0}^{r-1} \operatorname{Ker} \psi_i$ est une intersection de r hyperplans dont les équations sont linéairement indépendantes, donc d'après le cours de MP2I, G est un s.e.v. de dimension n-r.

Soit $z \in F \cap G$, alors il existe $(\alpha_0, \dots, \alpha_{r-1}) \in \mathbb{C}^r$ tel que $z = \sum_{i=0}^{r-1} \alpha_i u^i(x)$ et pour tout $j \in [0, r-1]$, $\psi_j(z) = 0$.

Pour
$$j \in [0, r-1]$$
, $\psi_j(z) = \sum_{i=0}^{r-1} \alpha_i \psi_j(u^i(x)) = \sum_{i=0}^{r-1} \alpha_i \varphi(u^{i+j}(x))$,

 $\text{donc on obtient les \'egalit\'es} \left\{ \begin{array}{lll} \alpha_0 \varphi(x) & +\alpha_1 \varphi(u(x)) & +\dots & +\alpha_{r-2} \varphi(u^{r-1}(x)) & +\alpha_{r-1} \varphi(u^{r-1}(x)) & = & 0 \\ \alpha_0 \varphi(u(x)) & +\alpha_1 \varphi(u^2(x)) & +\dots & +\alpha_{r-2} \varphi(u^{r-1}(x)) & = & 0 \\ \vdots & & & & & = & 0 \\ \alpha_0 \varphi(u^{r-2}(x)) & +\alpha_1 \varphi(u^{r-1}(x)) & & & = & 0 \\ \alpha_0 \varphi(u^{r-1}(x)) & & & = & 0 \end{array} \right.$

Comme $\varphi(u^{r-1}(x)) = \varphi(y) \neq 0$, en remontant depuis la dernière ligne, on a $\alpha_0 = \ldots = \alpha_{r-1} = 0$ donc z = 0.

Conclusion : $\dim F + \dim G = n$ et $F \cap g = \{0\}$, donc d'après le th. 3 pour le prix de 2, F et G sont supplémentaires.

Enfin, pour tout
$$z \in G$$
, pour tout $j \in [0, r-2]$, $\psi_j(u(z)) = \varphi(u^j(u(z))) = \psi_{j+1}(z) = 0$ et $\psi_{r-1}(u(z)) = \varphi(u^r(z)) = \varphi(0) = 0$, donc $u(z) \in \bigcap_{j=0}^{r-1} \operatorname{Ker} \psi_j = G$.

Donc G est stable par u.

Q 6. On pose $\mathcal{P}(n)$ le prédicat :

« si E est un \mathbb{K} -e.v. de dimension n et u un endomorphisme nilpotent de E, alors il existe un base \mathscr{B} de E telle que mat u soit diagonale par blocs, chaque bloc étant une matrice J_k . »

 $\mathcal{P}(1)$ est vraie, car le seul endomorphisme nilpotent en dimension 1 est l'application nulle, qui a pour matrice J_1 .

Si $\mathcal{P}(1), \ldots, \mathcal{P}(r-1)$ sont vraies, alors soit u un endomorphisme nilpotent de E, espace de dimension n.

L'étude précédente montre qu'il existe deux s.e.v. supplémentaires F et G, stables par u, tels que $F \neq \{0\}$ et la matrice de l'endomorphisme induit par u dans F soit J_r dans une bonne base de F.

Si r = n, alors F = E et la base précédente convient.

Sinon l'endomorphisme v induit par u dans G est aussi nilpotent et $0 \leq \dim G < n$, donc $\mathscr{P}(\dim G)$ est vraie : on peut trouver une base de G dans laquelle la matrice de v soit diagonale par blocs, chaque bloc étant une matrice J_k .

En concaténant la bonne base de F et cette base de G, on obtient une base de E qui répond aux contraintes demandées, donc $\mathscr{P}(n)$ est vraie.

D'après le principe de récurrence, pour tout $n \in \mathbb{N}^*$, $\mathscr{P}(n)$ est vraie.