Problème 1

On définit la fonction $f: x \mapsto \arccos \frac{1-x}{1+x}$.

Question 1) Montrez que l'ensemble de définition de f est $[0, +\infty[$.

Question 2) Justifiez soigneusement que f est dérivable sur $]0, +\infty[$ et quand $x \in]0, +\infty[$, calculez f'(x) sous la forme $\frac{1}{g(x)}$ où g(x) est une expression simple.

Question 3) Pour répondre à cette question, vous admettrez le th. suivant :

Soit f une fonction définie sur un intervalle I et $a \in I$. Si f est continue sur I, f est dérivable sur $I - \{a\}$ et si f' a une limite ℓ en a, alors le taux d'accroissement $\frac{f(x) - f(a)}{x - a}$ a aussi pour limite ℓ quand x tend vers a.

Montrez que f n'est pas dérivable en 0 (sous-entendu à droite, bien évidemment).

Question 4) Dressez le tableau de variations de f.

Question 5) Montrez que f est une bijection de $[0, +\infty[$ sur son image $f([0, +\infty[)$.

Question 6) Sur la même figure, donnez l'allure de la courbe de f ainsi que celle de sa réciproque.

On pose maintenant $q: x \mapsto 2 \arctan \sqrt{x}$.

Question 7) Montrez que g est dérivable sur $]0, +\infty[$ et quand $x \in]0, +\infty[$, calculez g'(x).

Question 8) Donnez une relation simple entre f et g. Déduisez-en une expression simple de la réciproque de f à l'aide de la fonction tan.

Question 9) Montrez que l'équation $g(x) + \arctan \frac{x}{3} = \pi$ a une unique solution que vous préciserez.

Problème 2

On pose $f: x \mapsto x^3 - 3x$.

Question 1) Dressez le tableau de variations de la fonction f. Résolvez les équations f(x) = 2, f(x) = -2 et l'inéquation $f(x) \ge -2$.

Question 2) Justifiez que f réalise une bijection de $[1, +\infty[$ dans $[-2, +\infty[$. On appelle φ la réciproque de cette bijection. Précisez ses propriétés de continuité, de dérivabilité et donnez l'allure de sa courbe.

Dans toute la suite, on pose $g = \varphi \circ f$.

Question 3)

- a) Montrez que g est définie sur $[-2, +\infty[$ et qu'elle y est continue.
- b) Justifiez que g est dérivable sur]-2,1[et sur $]1,+\infty[$.
- c) Précisez les variations de g.

Question 4) Soit $x \in [-2, +\infty[$. On pose y = g(x).

- a) Montrez que f(y) = f(x), pus donnez trois expressions possibles de y en fonction de x.
- b) Justifiez que pour $x \in [1, +\infty[, g(x) = x \text{ et pour } x \in [-2, 1], g(x) = \frac{-x + \sqrt{3(4 x^2)}}{2}.$

Question 5) Finissez l'étude de g: est-elle dérivable en -2 ou en 1?

Question 6) Donnez l'allure de la courbe de g.

Problème 1

Question 1) arccos est définie sur [-1, +1] donc f(x) existe si et seulement si $x \neq -1$ et $\frac{1-x}{1+x} \in [-1, +1]$.

On résout deux inéquations : $\frac{1-x}{1+x} \le 1$ et $\frac{1-x}{1+x} \ge -1$.

$$\frac{1-x}{1+x} \leqslant 1 \iff \leqslant 0 \leqslant 1 - \frac{1-x}{1+x} \iff 0 \leqslant \frac{2x}{1+x} \iff x \in]-\infty, -1[\cup [0,+\infty[.]] + \infty[] = 0$$

$$-1 \leqslant \frac{1-x}{1+x} \iff 0 \leqslant \frac{1-x}{1+x} + 1 \iff 0 \leqslant \frac{2x}{1+x} \iff x \in]-1, +\infty[.$$

Donc les deux inégalités sont satisfaites uniquement quand x est positif.

L'ensemble de définition de f est donc effectivement $[0, +\infty[$.

Question 2) arccos est dérivable sur]-1,+1[, donc on cherche d'abord les points x tels que $\frac{1-x}{1+x}=1$ ou $\frac{1-x}{1+x}=-1$.

La première équation a pour solution 0, la seconde n'en a pas, donc pour tout $x \in]0, +\infty[, \frac{1-x}{1+x} \in]-1, +1[.$

On peut donc conclure : $x \mapsto \frac{1-x}{1+x}$ est dérivable sur $]0, +\infty[$, à valeurs dans]-1, +1[et arccos est dérivable sur]-1, +1[, donc d'après le th. de composition des fonctions dérivables, f est dérivable sur $]0, +\infty[$.

Pour tout
$$x > 0$$
, $f'(x) = \arccos'\left(\frac{1-x}{1+x}\right) \times \frac{d}{dx}\left(\frac{1-x}{1+x}\right) = \frac{-1}{\sqrt{1-\left(\frac{1-x}{1+x}\right)^2}} \times \frac{-2}{(1+x)^2} = \frac{2}{(1+x)^2\sqrt{\frac{(1+x)^2-(1-x)^2}{(1+x)^2}}}$

$$f'(x) = \frac{2}{(1+x)^2 \sqrt{\frac{4x}{(1+x)^2}}} = \frac{1}{(1+x)\sqrt{x}}.$$

Question 3) Pour x > 0, $f'(x) = \frac{1}{(1+x)\sqrt{x}}$ donc d'après les th. d'opérations sur les limites, f' a pour limite $+\infty$ en 0 (à droite).

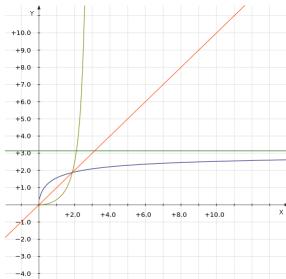
D'après le th. de limite de la dérivée, on en déduit que $\frac{f(x)-f(0)}{x-0}$ tend vers $+\infty$ quand x tend vers 0 par valeurs supérieures, donc f n'est pas dérivable en 0.

Question 4) Il est évident que f' est strictement positive sur $]0, +\infty[$ et que f est continue sur $[0, +\infty[$, donc f est strictement croissante sur $[0, +\infty[$.

 $f(0) = \arccos 1 = 0$ et $\lim_{x \to +\infty} \frac{1-x}{1+x} = -1$ donc par composition des limites, f a pour limite $\arccos(-1) = \pi$ en $+\infty$.

Question 5) f est continue sur $[0, +\infty[$ et strictement croissante sur $[0, +\infty[$ donc d'après le th. de bijection, f est une bijection de $[0, +\infty[$ dans $[0, \pi[$.

Question 6) La croissance vers π de la fonction f est vraiment très lente : pour atteindre la valeur 3, il faut prendre la valeur en environ 200...



Question 7) $x \mapsto \sqrt{x}$ est dérivable sur $]0, +\infty[$ à valeurs dans \mathbb{R} et arctan est dérivable sur \mathbb{R} , donc g est dérivable sur $]0, +\infty[$ (même th. qu'en question 2).

De plus, pour tout
$$x > 0$$
, $g'(x) = 2\arctan'(\sqrt{x}) \times \frac{1}{2\sqrt{x}} = \frac{1}{(1+\sqrt{x}^2)\sqrt{x}} = \frac{1}{(1+x)\sqrt{x}}$.

Question 8) f et g ont la même dérivée sur $]0, +\infty[$ et sont continues sur $[0, +\infty[$, donc il existe une constante $C \in \mathbb{R}$ telle que pour tout $x \ge 0$, f(x) = g(x) + C. Or f(0) = g(0) = 0 donc C = 0.

Conclusion: pour tout $x \ge 0$, $\arccos \frac{1-x}{1+x} = 2 \arctan \sqrt{x}$.

Soit $y \in [0, \pi[$, on veut résoudre l'équation f(x) = y d'inconnue $x \in [0, +\infty[$:

$$y = f(x) \iff \arctan \sqrt{x} = \frac{y}{2} \iff \sqrt{x} = \tan \frac{y}{2} \iff x = \tan^2 \left(\frac{y}{2}\right).$$

La fonction réciproque de f est donc la fonction $y \mapsto \tan^2\left(\frac{y}{2}\right)$.

Question 9) Soit E l'équation $2 \arctan \sqrt{x} + \arctan \frac{x}{3} = \pi$. Comme arctan est définie sur \mathbb{R} , il est évident que l'ensemble de définition D_E de l'équation est $[0, +\infty[$.

Pour $x \in D_E$,

$$E \iff \arctan \frac{x}{3} = \pi - 2 \arctan \sqrt{x} \iff \begin{cases} \frac{x}{3} = \tan \left(\pi - 2 \arctan \sqrt{x}\right) \\ \pi - 2 \arctan \sqrt{x} \in \left] \frac{-\pi}{2}, \frac{\pi}{2} \right[\end{cases} \iff \begin{cases} \frac{x}{3} = -\tan \left(2 \arctan \sqrt{x}\right) \\ 2 \arctan \sqrt{x} \in \left] \frac{\pi}{2}, \frac{3\pi}{2} \right[\end{cases}$$

$$\iff \begin{cases} \frac{x}{3} = -\frac{2\sqrt{x}}{1-x} \\ \arctan \sqrt{x} \in \left[\frac{\pi}{4}, \frac{3\pi}{4} \right] \end{cases} \iff \begin{cases} x(x-1) = 6\sqrt{x} \\ \arctan \sqrt{x} \in \left[\frac{\pi}{4}, \frac{\pi}{2} \right] \end{cases} \iff \begin{cases} x^2 - x - 6\sqrt{x} = 0 \\ x \in \left[1, +\infty \right[\right] \end{cases}$$

La première équation a pour racine 0 entre autres, mais 0 n'est pas dans $]1, +\infty[$, donc

$$E \iff \left\{ \begin{array}{c} x\sqrt{x} - \sqrt{x} - 6 = 0 \\ x > 1 \end{array} \right.$$

On pose $X=\sqrt{x}$: avec ce changement de variables, l'équation à résoudre est donc $X^3-X-6=0$, qui a pour racine évidente $2:X^3-X-6=(X-2)(X^2+2X+3)$. Le trinôme X^2+2X+3 est de discriminant strictement négatif donc n'a aucune racine réelle. Donc finalement il vient

$$E \iff \left\{ \begin{array}{ll} \sqrt{x} = 2 \\ x > 1 \end{array} \iff x = 4: \text{l'équation } E \text{ a pour unique solution } 4. \right.$$

Problème 2

Question 1) f est définie sur \mathbb{R} et y est continue et dérivable (fonction polynôme).

Pour tout $x \in \mathbb{R}$, $f'(x) = 3x^2 - 3$. Le signe de f' est évident, ce qui donne le tableau de variations suivant :

x	$-\infty$		-1		1		$+\infty$
f'(x)		+	0	_	0	+	
f(x)	$-\infty$		2				+∞

$$f(x) = 2 \iff x^3 - 3x - 2 = 0 \iff (x+1)^2(x-2) = 0 \iff (x = -1) \text{ ou } x = 2$$

f étant une fonction impaire, on a directement $f(x) = -2 \iff (x = 1 \text{ ou } x = -2)$

Enfin, comme f est strictement croissante sur $]-\infty,-1]$, on a : pour tout x<-2, f(x)< f(-2)=-2 et pour tout $x\in[-2,-1]$, $f(x)\geqslant -2$; et sur $[-1,+\infty[$, l'étude précédente montre que f a une valeur minimale qui est -2.

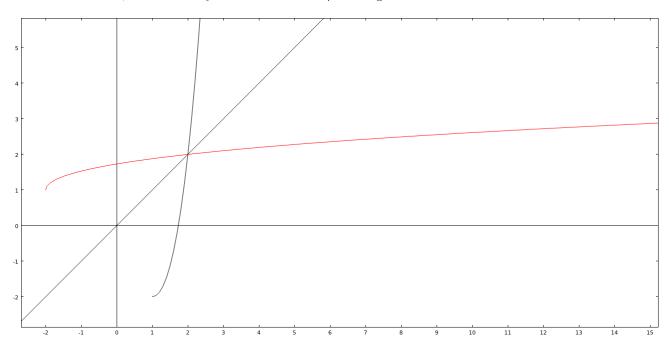
Donc $f(x) \ge -2 \iff x \ge -2$.

Question 2) Sur $[1, +\infty]$, f est continue et strictement croissante, donc d'après le th. de bijection, f réalise une bijection de $[1, +\infty[$ dans $f([1, +\infty[) = [-2, +\infty[$.

La réciproque de cette bijection est, d'après le même théorème, continue et strictement croissante sur $[-2, +\infty]$ et à valeurs dans $[1, +\infty[$.

Sur $]1, +\infty[$, f est dérivable et f' ne s'y annule pas, donc d'après le th. de dérivation d'une réciproque, φ est dérivable sur $f(]1, +\infty[) =]-2, +\infty[.$

Sur le même dessin, la courbe de f en noir et celle de φ en rouge.



Question 3)

- a) φ est définie sur $[-2, +\infty[$ donc pour $x \in \mathbb{R}, g(x)$ existe si et s.si $f(x) \in [-2, +\infty[$, si et s.si $x \in [-2, +\infty[$ (d'après la question 1); donc $\mathcal{D}_q = [-2, +\infty[$.
 - g y est continue comme composée de fonctions continues.
- b) Sur]-2,1[, f est dérivable et à valeurs dans $]-2,+\infty[$; et φ est dérivable sur $]-2,+\infty[$, donc d'après le th. composition des fonctions dérivables, g est dérivable sur]-2,1[. Et de même sur $]1,+\infty[$.
- c) φ est strictement croissante sur $[-2, +\infty[$, donc $g = \varphi \circ f$ a les mêmes variations que f: strictement croissante sur [-2,-1], strictement décroissante sur [-1,1] et strictement croissante sur $[1,+\infty[$.

Question 4)

a) Par définition, $y = \varphi(f(x))$ est l'unique antécédent de f(x) dans $[1, +\infty[$, donc f(y) = f(x). Par definition, $y = \varphi(f(x))$ est i unique antecedent de f(x) dans $[1, +\infty[$, done f(y) - f(x)]. Done $y^3 - y = x^3 - 3x$, done $y^3 - x^3 - 3(y - x) = 0$, done $(y - x)(y^2 + xy + x^2 - 3) = 0$. L'équation $y^2 + xy + x^2 - 3 = 0$ a deux racines qui sont $\frac{-x + \sqrt{3(4 - x^2)}}{2}$ et $\frac{-x - \sqrt{3(4 - x^2)}}{2}$. On a done trois expressions possibles de y : x ou $\frac{-x + \sqrt{3(4 - x^2)}}{2}$ ou $\frac{-x - \sqrt{3(4 - x^2)}}{2}$.

b) φ est la réciproque de la bijection réalisée par f de $[1, +\infty[$ dans $[-2, +\infty[$, donc pour tout $x \in [1, +\infty[$, g(x) = $\varphi \circ f(x) = x.$

Pour $x \in [-2,1[$, on a $x < 1 \le y$ (car φ est à valeurs dans $[1,+\infty[)$, donc il n'y a plus que deux choix possibles

Or
$$\frac{-x+\sqrt{3(4-x^2)}}{2}\geqslant 1\iff \sqrt{3(4-x^2)}\geqslant 2+x\iff 3(4-x^2)\geqslant (2+x)^2 \text{ (car } x+2\geqslant 0)$$

donc $\frac{-x+\sqrt{3(4-x^2)}}{2}\geqslant 1\iff 12-3x^2\geqslant x^2+4x+4\iff x^2+x-2\leqslant 0.$
Comme $x^2+x-2=(x-1)(x+2)$, on en déduit que l'inégalité $x^2+x-2\leqslant 0$ est vraie, donc par équivalences

successives, l'inégalité $\frac{-x + \sqrt{3(4-x^2)}}{2} \ge 1$ est vraie aussi.

Comme on doit avoir $y \ge 1$, on en déduit que $y = g(x) = \frac{-x + \sqrt{3(4 - x^2)}}{2}$.

Question 5) Pour x > 1, g(x) = x, donc g est dérivable à droite en 1 et

Pour
$$x < 1$$
, $\frac{g(x) - g(1)}{x - 1} = \frac{-x + \sqrt{3(4 - x^2)} - 2}{2(x - 1)} = \frac{(-x + 1) + (\sqrt{3(4 - x^2)} - 3)}{2(x - 1)} = -\frac{1}{2} + \frac{3(4 - x^2) - 9}{2(x - 1)\left(\sqrt{3(4 - x^2)} + 3\right)} = -\frac{1}{2} + \frac{3(4 - x^2) - 9}{2(x - 1)\left(\sqrt{3(4 - x^2)} + 3\right)} = -\frac{1}{2} + \frac{3(4 - x^2) - 9}{2(x - 1)\left(\sqrt{3(4 - x^2)} + 3\right)} = -\frac{1}{2} + \frac{3(4 - x^2) - 9}{2(x - 1)\left(\sqrt{3(4 - x^2)} + 3\right)} = -\frac{1}{2} + \frac{3(4 - x^2) - 9}{2(x - 1)\left(\sqrt{3(4 - x^2)} + 3\right)} = -\frac{1}{2} + \frac{3(4 - x^2) - 9}{2(x - 1)\left(\sqrt{3(4 - x^2)} + 3\right)} = -\frac{1}{2} + \frac{3(4 - x^2) - 9}{2(x - 1)\left(\sqrt{3(4 - x^2)} + 3\right)} = -\frac{1}{2} + \frac{3(4 - x^2) - 9}{2(x - 1)\left(\sqrt{3(4 - x^2)} + 3\right)} = -\frac{1}{2} + \frac{3(4 - x^2) - 9}{2(x - 1)\left(\sqrt{3(4 - x^2)} + 3\right)} = -\frac{1}{2} + \frac{3(4 - x^2) - 9}{2(x - 1)\left(\sqrt{3(4 - x^2)} + 3\right)} = -\frac{1}{2} + \frac{3(4 - x^2) - 9}{2(x - 1)\left(\sqrt{3(4 - x^2)} + 3\right)} = -\frac{1}{2} + \frac{3(4 - x^2) - 9}{2(x - 1)\left(\sqrt{3(4 - x^2)} + 3\right)} = -\frac{1}{2} + \frac{3(4 - x^2) - 9}{2(x - 1)\left(\sqrt{3(4 - x^2)} + 3\right)} = -\frac{1}{2} + \frac{3(4 - x^2) - 9}{2(x - 1)\left(\sqrt{3(4 - x^2)} + 3\right)} = -\frac{1}{2} + \frac{3(4 - x^2) - 9}{2(x - 1)\left(\sqrt{3(4 - x^2)} + 3\right)} = -\frac{1}{2} + \frac{3(4 - x^2) - 9}{2(x - 1)\left(\sqrt{3(4 - x^2)} + 3\right)} = -\frac{1}{2} + \frac{3(4 - x^2) - 9}{2(x - 1)\left(\sqrt{3(4 - x^2)} + 3\right)} = -\frac{1}{2} + \frac{3(4 - x^2) - 9}{2(x - 1)\left(\sqrt{3(4 - x^2)} + 3\right)} = -\frac{1}{2} + \frac{3(4 - x^2) - 9}{2(x - 1)\left(\sqrt{3(4 - x^2)} + 3\right)} = -\frac{1}{2} + \frac{3(4 - x^2) - 9}{2(x - 1)\left(\sqrt{3(4 - x^2)} + 3\right)} = -\frac{1}{2} + \frac{3(4 - x^2) - 9}{2(x - 1)\left(\sqrt{3(4 - x^2)} + 3\right)} = -\frac{1}{2} + \frac{3(4 - x^2) - 9}{2(x - 1)\left(\sqrt{3(4 - x^2)} + 3\right)} = -\frac{1}{2} + \frac{3(4 - x^2) - 9}{2(x - 1)\left(\sqrt{3(4 - x^2)} + 3\right)} = -\frac{1}{2} + \frac{3(4 - x^2) - 9}{2(x - 1)\left(\sqrt{3(4 - x^2)} + 3\right)} = -\frac{3(4 - x^2) - 9}{2(x - 1)\left(\sqrt{3(4 - x^2)} + 3\right)} = -\frac{3(4 - x^2) - 9}{2(x - 1)\left(\sqrt{3(4 - x^2)} + 3\right)} = -\frac{3(4 - x^2) - 9}{2(x - 1)\left(\sqrt{3(4 - x^2)} + 3\right)} = -\frac{3(4 - x^2) - 9}{2(x - 1)\left(\sqrt{3(4 - x^2)} + 3\right)} = -\frac{3(4 - x^2) - 9}{2(x - 1)\left(\sqrt{3(4 - x^2)} + 3\right)} = -\frac{3(4 - x^2) - 9}{2(x - 1)\left(\sqrt{3(4 - x^2)} + 3\right)} = -\frac{3(4 - x^2) - 9}{2(x - 1)\left(\sqrt{3(4 - x^2)} + 3\right)} = -\frac{3(4 - x^2) - 9}{2(x - 1)} = -\frac{3(4 - x^2) - 9}{2(x - 1)} = -\frac{3(4 -$

$$=-\frac{1}{2}+\frac{3(1-x^2)}{2(x-1)\left(\sqrt{3(4-x^2)}+3\right)}=-\frac{1}{2}+\frac{-3(x+1)}{2\left(\sqrt{3(4-x^2)}+3\right)}\xrightarrow[x\to 1_-]{}-1.$$

g est donc dérivable à gauche en 1 et $g'_q(1) = -1$.

Comme les dérivées à gauche et à droite en 1 sont différentes, la fonction g n'est pas dérivable en 1. La courbe de g présente en 1 un point anguleux.

$$\text{Pour } x > -2, \ \frac{g(x) - g(-2)}{x + 2} = \frac{-x + \sqrt{3(4 - x^2)} - 2}{2(x + 2)} = \frac{(-x - 2) + \sqrt{3(2 - x)(2 + x)}}{2(x + 2)} = -\frac{1}{2} + \sqrt{\frac{3(2 - x)}{2 + x}} \xrightarrow[x \to -2_+]{} + \infty.$$

La fonction g n'est donc pas dérivable en -2 (à droite), sa courbe possède en ce point une tangente verticale.

Question 6)

