Variables aléatoires

Note : le cours de 1ère année se limite aux probabilités finies. Dans tout ce chapitre, même si ce n'est pas rappelé à chaque fois, on suppose que Ω est un ensemble fini et que $\mathbb P$ est une probabilité sur Ω .

1 Variables aléatoires réelles ou complexes

1.1 Définition

Lorsqu'on réalise une expérience aléatoire, les événements sont souvent décrits par un paramètre numérique :

Exemples.

- On jette deux fois un dé non truqué, l'événement A est associé à la propriété « la somme des deux résultats vaut 8 « , l'événement B à « le deuxième résultat est égal au premier plus 2 « .
- On jette une pièce 6 fois, l'événement C est associé à la propriété « le premier lancer qui donne "pile" est le lancer de rang 3 », l'événement D à « on obtient 4 fois "pile" ».

Ce paramètre numérique mesure une propriété des issues possibles de l'expérience : à chaque issue, on associe un nombre.

Exemples.

— Dans le premier exemple, l'univers est l'ensemble des couples de $\{1,\ldots,6\}$ $(\Omega=\{1,\ldots,6\}^2)$ et à toute issue (a,b), on associe a+b (premier événement) ou b-a (second événement) :

$$A = \{(a, b) \in \Omega / a + b = 8\}, \quad B = \{(a, b) \in \Omega / b - a = 2\}$$

— Dans le second exemple, l'univers est l'ensemble des 6-uplets de $\{0,1\}$ (avec la convention 0 signifie "pile" et 1 signifie "face") et à toute issue possible $a=(a_1,\ldots,a_6)$, on associe le nombre $f(a)=\min\{i\in\{1,\ldots,6\}\ /\ a_i=0\}$ si ce nombre existe ou 7 sinon (autrement dit pas de tirage "pile") ou la somme $s(a)=a_1+\ldots+a_6$:

$$C = \{a \in \Omega \ / \ f(a) = 3\}, \quad D = \{a \in \Omega \ / \ s(a) = 2\}$$

Définition. On appelle variable aléatoire réelle (en abrégé v.a.r.) toute application de Ω dans \mathbb{R} , variable aléatoire complexe toute application de Ω dans \mathbb{C} . Plus généralement, on appelle variable aléatoire toute application de Ω dans un ensemble E.

En général, on note avec des lettres majuscules droites les variables aléatoires : X, Y, S, etc.

Remarque.

- Comme son nom ne l'indique pas, une variable aléatoire n'est pas une variable, mais une fonction! La terminologie a été fixée à une époque ancienne où la notion n'était pas encore parfaitement claire.
- Toute fonction constante est une variable aléatoire, appelé variable aléatoire certaine.
- Si A est un événement, on note 1_A l'application de Ω dans $\mathbb R$ définie par :

$$1_A(\omega) = 1 \text{ si } \omega \in A \text{ et } 1_A(\omega) = 0 \text{ sinon.}$$

La v.a.r. 1_A est appelé fonction indicatrice de A.

1.2 Loi d'une variable aléatoire

Soit X une variable aléatoire sur Ω à valeurs dans E. L'objet $X(\omega)$ qu'on calcule après une expérience qui a pour résultat $\omega \in \Omega$ n'est pas connue à l'avance, en revanche on peut prévoir ces valeurs possibles ainsi que la probabilité qu'il prenne telle ou telle valeur : on fait donc apparaître les événement suivants $(k \in E)$:

$$\{\omega \in \Omega / X(\omega) = k\}$$

qu'on note symboliquement

$${X = k}$$

 $X(\Omega)$, image de l'application X, est l'ensemble des valeurs possibles que peut prendre le résultat $X(\omega)$ après une expérience.

Si k est une valeur impossible (autrement dit si $k \notin X(\Omega)$), alors un tel événement est vide, donc sa probabilité est nulle. Les événements précédents n'ont donc d'intérêt que si $k \in X(\Omega)$.

Définition. Soit X une variable aléatoire sur un espace probabilisé fini (Ω, \mathbb{P}) à valeurs dans E. Pour toute partie A de E, on note $\{X \in A\}$ l'événement $X^{-1}(A) = \{\omega \in \Omega \mid X(\omega) \in A\}$.

Proposition 1. Soit X une variable aléatoire sur un espace probabilisé fini (Ω, \mathbb{P}) . À toute partie A de $X(\Omega)$, on associe $\mathbb{P}_X(A) = \mathbb{P}(\{X \in A\})$. Alors \mathbb{P}_X est une probabilité sur $X(\Omega)$, appelé loi de X.

Remarque. L'intérêt de la notion de variable aléatoire est de déplacer les calculs de probabilité dans l'univers Ω souvent mal connu (donc en fait dans $\mathscr{P}(\Omega)$ qui de plus est souvent un ensemble énorme : le problème des anniversaires conduit à un ensemble de cardinal $2^{365^n}!!$) dans un ensemble fini $X(\Omega)$ bien plus agréable (partie finie de \mathbb{R}) et souvent bien plus petit (donc en fait dans $\mathscr{P}(X(\Omega))$).

Dans notre pratique des probabilités, sauf quand ce sera clairement demandé, nous supposerons toujours l'existence des variables aléatoires qu'on considère!

Comme Ω est fini, $X(\Omega)$ est un ensemble fini $\{x_1, \ldots, x_p\}$.

Toute partie A de $X(\Omega)$ est de la forme $A=\{x_i \ / \ i \in I\}$ où I est un sous-ensemble d'indices de $\{1,\ldots,p\}$, donc $\{X\in A\}=\bigsqcup_{i\in I}\{X=x_i\}$, réunion disjointe. Donc $\mathbb{P}(\{X\in A\})=\sum_{i\in I}\mathbb{P}(\{X=x_i\})=\sum_{i\in I}\mathbb{P}_X(\{x_i\})$.

Autrement dit,

Proposition 2. La famille d'événements $(\{X=x_i\})_{i\in\{1,\dots,p\}}$ est un système complet d'événements, appelé système complet d'événements associé à X.

En particulier,
$$\sum_{i=1}^{p} \mathbb{P}(\{X = x_i\}) = 1$$
.

Quand on demande la loi de X, on demande donc de déterminer l'ensemble $X(\Omega)$ et pour chaque $x_i \in X(\Omega)$, la valeur de $\mathbb{P}(\{X = x_i\})$, c'est-à-dire la distribution de probabilités associée à \mathbb{P}_X .

Exercices:

- 1) Quelle est la loi d'une variable aléatoire certaine?
- 2) Quelle est la loi d'un fonction indicatrice d'un événement de Ω ?
- 3) On tire deux boules successivement sans remise dans une urne qui en contient au départ 3 blanches et 2 noires. On appelle B le nombre de boules blanches tirées. Quelle est la loi de B?
- 4) On tire successivement sans remise des boules dans une urne contenant au départ 2 boules rouges et 4 boules bleues jusqu'à obtenir une boule rouge. On note R le nombre de tirages effectués. Quelle est la loi de R?

Remarque. Pour alléger les notations, on ne note pas les accolades dans les probabilités :

$$\mathbb{P}(\{X=k\})$$
 est noté $\mathbb{P}(X=k)$, $\mathbb{P}(\{X\in A\})$ est noté $\mathbb{P}(X\in A)$, $\mathbb{P}(\{X\geqslant k\})$ est noté $\mathbb{P}(X\geqslant k)$, etc

Parfois, dans le cas de v.a.r., il est plus simple de calculer $\mathbb{P}(X \leq k)$ que $\mathbb{P}(X = k)$ directement : si on ordonne les valeurs possibles de $X : X(\Omega) = \{x_1, \dots, x_p\}$ tel que $x_1 < x_2 < \dots x_p$, alors on peut retrouver la loi de X:

 $\begin{array}{l} --\{X\leqslant x_1\}=\{X=x_1\} \text{ donc } \mathbb{P}(X\leqslant x_1)=\mathbb{P}(X=x_1)\,;\\ --\text{ pour } i\geqslant 2,\, \{X\leqslant x_i\}=\{X=x_i\}\cup \{X\leqslant x_{i-1}\} \text{ (union disjointe), donc}\\ \mathbb{P}(X\leqslant x_i)=\mathbb{P}(X=x_i)+\mathbb{P}(X\leqslant x_{i-1}),\, \text{donc } \mathbb{P}(X=x_i)=\mathbb{P}(X\leqslant x_i)-\mathbb{P}(X\leqslant x_{i-1}). \end{array}$

Exercices:

5) On tire successivement sans remise k jetons d'un sac contenant n jetons numérotés de 1 à n. On note M la v.a.r. égale au maximum des numéros des jetons tirés. Donnez la loi de M.

Application : montrez que
$$\sum_{i=k}^{n} {k-1 \choose i-1} = {k \choose n}$$
.

1.3 Lois conditionnelles

Définition. Soit X une variable aléatoire sur un espace probabilisé fini (Ω, \mathbb{P}) , A un événement non négligeable.

On appelle loi conditionnelle de X sachant A la loi de la variable X sur l'espace probabilisé (Ω, \mathbb{P}_A) .

Autrement dit, connaître la loi de X sachant A revient à connaître la distribution de probabilités $(\mathbb{P}_A(X=x))_{x\in X(\Omega)}$.

Si on connaît un système complet d'événements $(A_i)_{i\in I}$ et, pour tout $i\in I$, les lois conditionnelles de X sachant A_i , alors on peut retrouver la loi de X par la formule des probabilités totales :

pour tout
$$x \in X(\Omega)$$
, $\mathbb{P}(X = x) = \sum_{i \in I} \mathbb{P}(A_i) \mathbb{P}_{A_i}(X = x)$.

1.4 Opérations sur les v.a.r.

L'ensemble des v.a.r. sur un espace probabilisé fini (Ω, \mathbb{P}) est $\mathscr{F}(\Omega, \mathbb{R})$, qui est un \mathbb{R} -e.v. : on peut donc additionner, multiplier par un scalaire des v.a.r. On peut aussi les multiplier entre elles.

Si X est une v.a.r. sur Ω et si f est une fonction de $\mathbb R$ dans $\mathbb R$ définie sur $X(\Omega)$, alors la composée $f \circ X$ est une v.a.r. définie sur Ω , qu'on note plutôt f(X).

La loi de f(X) est donc donnée par :

si
$$y \in f(X)(\Omega)$$
, alors $\mathbb{P}(f(X) = y) = \sum_{x \in f^{-1}(\{y\})} \mathbb{P}(X = x)$.

Exercices:

6) On lance deux fois un dé et on note D la v.a.r. égale à la différence entre le nombre obtenu au premier lancer et celui au deuxième lancer. Calculez la loi de D^2 , celle de $\sin(D\pi/3)$.

De même, l'ensemble des variables aléatoires complexes est un \mathbb{C} -e.v.

2 Espérance

2.1 Définition

Quand on répète un grand nombre de fois une même expérience aléatoire, on peut calculer la moyenne des résultats d'une variable aléatoire X et on constate que cette moyenne tend vers un nombre quand le nombre de répétitions de l'expérience tend vers $+\infty$: cette limite est donc à peu près ce qu'on peut espérer en moyenne obtenir comme résultat de la variable X.

Définition. Soit X une v.a.r.c sur un espace probabilisé fini (Ω, \mathbb{P}) . $X(\Omega) = \{x_1, \dots, x_p\}$.

On appelle espérance de X le nombre $\mathbb{E}(X) = \sum_{i=1}^{p} x_i \mathbb{P}(X = x_i)$.

L'espérance de X est donc la moyenne de ses valeurs possibles, pondérées par leurs probabilités respectives. La proposition suivante donne une autre façon de calculer l'espérance d'une v.a.r.

Proposition 3. Soit X une v.a.r.c sur un espace probabilisé fini (Ω, \mathbb{P}) .

$$Alors \; \mathbb{E}(X) = \sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\{\omega\}) = \sum_{x \in X(\Omega)} x \mathbb{P}(X = x).$$

Exemples.

- L'espérance d'une v.a.r.c certaine égale à a est a.
- Si A est un événement, l'espérance de son indicatrice est sa probabilité : $\mathbb{E}(1_A) = \mathbb{P}(A)$.

Exercices:

- 7) On lance deux dés, on note S la somme des deux nombres apparus. Quelle est l'espérance de S?
- 8) On joue au jeu suivant : on lance un dé, si on obtient un nombre pair i, on perd i euro, et si on tombe sur un nombre impair i, on gagne Ki euros (où K est une constante). On appelle G la v.a.r. qui donne le gain après un jeu. Quelle est l'espérance de G? Pour quelles valeurs de K est-ce une bonne idée de jouer?
- 9) La roulette au casino comporte 37 cases numérotées de 0 à 36. Vous misez 1 « truc » (1 euro, 1 dizaine d'euros ou 1 million d'euros) sur un nombre m entre 1 et 36 (on ne peut pas miser sur le 0), puis le croupier lance la bille : si la bille tombe dans la case m, vous gagnez 36 « trucs », sinon vous perdez votre mise. Le casino prend-il un risque sur le long terme en proposant ce jeu?

2.2 Propriétés

Proposition 4. L'espérance est une application linéaire sur $\mathscr{F}(\Omega,\mathbb{R})$:

$$\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y), \quad \mathbb{E}(\lambda X) = \lambda \mathbb{E}(X)$$

En particulier, $\mathbb{E}(aX + b) = a\mathbb{E}(X) + b$.

Si X est une v.a.r. positive, alors $\mathbb{E}(X) \geqslant 0$.

Si X, Y sont deux v.a.r. telles que $X \leq Y$, alors $\mathbb{E}(X) \leq \mathbb{E}(Y)$.

Définition. On dit qu'une v.a.r.c X est centrée si et seulement si $\mathbb{E}(X) = 0$.

À toute v.a.r.c X, on associe une v.a.r. centrée : $X - \mathbb{E}(X)$.

Pour les compositions, on dispose du théorème de transfert.

Proposition 5. Soit X une v.a.r. sur un espace probabilisé fini (Ω, \mathbb{P}) . $X(\Omega) = \{x_1, \dots, x_p\}$. Soit f une fonction de \mathbb{R} dans \mathbb{R} définie sur $X(\Omega)$. Alors

$$\mathbb{E}(f(X)) = \sum_{i=1}^{p} f(x_i) \mathbb{P}(X = x_i)$$

Ce théorème permet de calculer directement l'espérance de f(X) sans devoir calculer la loi de f(X): il suffit de connaître celle de X.

Exercices:

- 10) On lance deux fois un dé et on note D la v.a.r. égale à la différence entre le nombre obtenu au premier lancer et celui au deuxième lancer. Calculez l'espérance de D^2 .
- 11) On lance un dé truqué : la probabilité d'obtenir k est proportionnelle à k. On note X le nombre obtenu. Déterminez la loi de X, calculez l'espérance de X, de $\frac{1}{X}$ et comparez.

2.3 Inégalité de Markov

Proposition 6. Soit X une v.a.r. positive sur un espace probabilisé fini (Ω, \mathbb{P}) . Alors

$$\forall a > 0 \quad \mathbb{P}(X \geqslant a) \leqslant \frac{\mathbb{E}(X)}{a}$$

Cette inégalité n'a d'intérêt que pour $a > \mathbb{E}(X)$, sinon on majore une probabilité par un nombre plus grand que 1.

3 Variance

3.1 Généralités

Définition. Soit X une v.a.r. sur un espace probabilisé fini (Ω, \mathbb{P}) .

On appelle variance de X le nombre $\mathbb{V}(X) = \mathbb{E}\left((X - \mathbb{E}(X))^2\right)$.

On appelle écart-type de X le réel $\sigma(X) = \sqrt{\mathbb{V}(X)}$.

La variance (ou l'écart-type) mesure la dispersion de X autour de sa moyenne.

En général, on calcule la variance par la formule suivante.

Proposition 7. (Formule de Huygens)

Soit X une v.a.r. sur un espace probabilisé fini (Ω, \mathbb{P}) . Alors

$$\mathbb{V}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$$

Exercices:

- 12) On lance un dé et on note D la v.a.r. qui donne le résultat du lancer. Calculez son espérance et sa variance.
- 13) On tire trois boules successivement sans remise d'une urne contenant initialement 5 boules bleues et 2 boules rouges. On note R le rang de sortie de la première boule rouge si on en tire une, sinon 4. Calculez l'espérance et la variance de R.
- 14) On considère un tableau aléatoirement rangé contenant les entiers $1, \ldots, n$ $(n \in \mathbb{N}^*)$. Toutes les configurations sont équiprobables. On note U la v.a.r. qui donne la position du nombre 1 dans ce tableau. Calculez son espérance et sa variance.

Proposition 8. Si a, b sont deux réels et X est une v.a.r., alors
$$\mathbb{V}(aX + b) = a^2 \mathbb{V}(X)$$

Remarque. Si X est une v.a.r. d'espérance m et de variance v, on pose $X' = \frac{1}{\sqrt{v}}(X-m)$.

X' est alors une v.a.r. centrée dont la variance vaut 1: on l'appelle la v.a.r. centrée réduite associée à X.

3.2 Inégalité de Bienaymé-Tchebychev

Proposition 9. Soit X une v.a.r. sur un espace probabilisé fini (Ω, \mathbb{P}) . Alors

$$\forall \varepsilon > 0 \quad \mathbb{P}(|X - \mathbb{E}(X)| \geqslant \varepsilon) \leqslant \frac{\mathbb{V}(X)}{\varepsilon^2}$$

La même remarque que pour l'inégalité de Markov s'applique : cette inégalité n'a d'intérêt que pour des valeurs assez grandes de ε , sinon on majore une probabilité par 1.

4 Lois classiques

4.1 Loi uniforme

Définition. Soit (Ω, \mathbb{P}) un espace probabilisé et a, b deux entiers tels que $a \leq b$

On dit qu'une v.a.r. suit la loi uniforme sur $\llbracket a,b \rrbracket$ si et seulement si $X(\Omega) = \llbracket a,b \rrbracket$ et \mathbb{P}_X est la probabilité uniforme sur $\llbracket a,b \rrbracket$, autrement dit si pour tout $k \in \llbracket a,b \rrbracket$, $\mathbb{P}(X=k) = \frac{1}{b-a+1}$.

On note alors $X \hookrightarrow \mathcal{U}(\llbracket a, b \rrbracket)$.

Dans ce cas, on a
$$\mathbb{E}(X) = \frac{a+b}{2}$$
 et $\mathbb{V}(X) = \frac{(b-a)(b-a+2)}{12}$.

Souvent, on a
$$a=1$$
 et $b=n$, donc dans ce cas, $\mathbb{E}(X)=\frac{n+1}{2}$ et $\mathbb{V}(X)=\frac{n^2-1}{12}$.

Exemple.

Si on note X le nombre obtenu après un lancer de dé non truqué, X suit la loi uniforme sur [1,6].

4.2 Loi de Bernoulli

Définition. Soit $p \in [0, 1]$.

On dit qu'une v.a.r. X suit la loi de Bernoulli de paramètre p si et seulement si $X(\Omega) \subset \{0,1\}$ et $\mathbb{P}(X=1)=p$.

On note alors $X \hookrightarrow \mathcal{B}(p)$.

Dans ce cas, on note souvent q = 1 - p: $\mathbb{E}(X) = p$ et $\mathbb{V}(X) = pq$.

Exemples.

- Toute expérience aléatoire à deux issues peut être représentée par une variable de Bernoulli en notant 0 et 1 les deux issues. Le cas typique est le lancer d'une pièce (équilibrée si p = 1/2, non équilibrée sinon).
- En particulier toute expérience dont seul la réussite ou l'échec importe peut être représentée par une variable de Bernoulli : 1 représente la réussite, 0 l'échec.

4.3 Loi binomiale

On considère une suite de n expériences aléatoires indépendantes qui suivent une loi de Bernoulli de même paramètre p. On note X le nombre de réussites dans cette répétition d'expériences, appelée schéma de Bernoulli. Alors la loi de X s'appelle la loi binomiale de paramètre (n,p).

Définition. Soit $p \in [0, 1]$ et $n \in \mathbb{N}^*$.

On dit qu'une v.a.r. X suit la loi binomiale de paramètre (n,p) si et seulement si $X(\Omega) \subset [0,n]$ et pour tout $k \in [0,n]$, $\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$.

On note alors $X \hookrightarrow \mathcal{B}(n,p)$.

Dans ce cas, on note souvent q = 1 - p: $\mathbb{E}(X) = np$ et $\mathbb{V}(X) = npq$.

Exemples.

- On lance n fois une pièce dont la probabilité de tomber sur "pile" vaut p. Alors si X est le nombre de fois où on tombe sur "pile", X suit une loi binomiale de paramètre (n, p).
- On fait n tirages successifs avec remise dans une urne contenant une proportion p de boules blanches. Le nombre de boules blanches tirées suit la loi binomiale de paramètre (n, p).

6

5 Couples de variables aléatoires

5.1 Généralités

Définition. Soit X, Y deux variables aléatoires sur un espace probabilisé fini (Ω, \mathbb{P}) .

La fonction $\omega \mapsto (X(\omega), Y(\omega))$ est appelée couple de variables aléatoires. Si X et Y sont deux v.a.r. le couple est dit couple de v.a.r.

On peut reprendre le même schéma de présentation que pour une seule v.a.r.

Proposition 10. Soit (X,Y) un couple de variables aléatoires sur un espace probabilisé fini (Ω, \mathbb{P}) . Alors la famille d'événements $(\{X=x\} \cap \{Y=y\})_{(x,y)\in X(\Omega)\times Y(\Omega)}$ est un système complet d'événements appelé s.c.e. associé au couple (X,Y).

La probabilité $\mathbb{P}(\{X=x\} \cap \{Y=y\})$ est souvent notée $\mathbb{P}(X=x,Y=y)$.

Définition. Soit X, Y deux variables aléatoires sur un espace probabilisé fini (Ω, \mathbb{P}) . La loi conjointe de X et Y est la loi du couple (X, Y).

La loi conjointe est en général précisée par la distribution de probabilités associée au couple (X,Y).

On la représente souvent par un tableau à double entrée : si $X(\Omega) = \{x_1, \dots, x_m\}$ et $Y(\Omega) = \{y_1, \dots, y_n\}$, alors on place $\mathbb{P}(X = x_i, Y = y_i)$ sur la *i*-ème ligne et la *j*-ème colonne.

5.2 Lois marginales

Définition. Soit X, Y deux variables aléatoires sur un espace probabilisé fini (Ω, \mathbb{P}) . Les lois marginales du couple (X, Y) sont les lois de X et de Y.

Proposition 11. Soit X, Y deux variables aléatoires sur un espace probabilisé fini (Ω, \mathbb{P}) . Alors

$$\label{eq:pour tout } pour \ tout \ x \in X(\Omega) \ , \ \mathbb{P}(X=x) = \sum_{y \in Y(\Omega)} \mathbb{P}(X=x,Y=y),$$

$$\, \triangleright \, \, pour \, \, tout \, \, y \in Y(\Omega) \, \, , \, \mathbb{P}(Y=y) = \sum_{x \in X(\Omega)} \mathbb{P}(X=x,Y=y).$$

Si on a représenté la loi conjointe de (X,Y) sous forme d'un tableau, on obtient les lois marginales en additionnant les probabilités sur chaque ligne ou chaque colonne (d'où le nom « lois marginales » : celle qu'on note en marge du tableau).

Exercices:

15) Une urne contient 3 boules bleues et 5 boules rouges. On tire deux boules sans remise. Soit X la v.a.r. de Bernoulli qui vaut 1 si la première boule est bleue, Y celle qui vaut 1 quand la deuxième est bleue.

X	0	1	loi de X
0			
1			
loi de Y			

16) Une urne contient n boules numérotées de 1 à n. On tire une boule avec remise : on note X le numéro de la boule. Puis on tire X boules et on note Y le maximum des numéros des boules tirées. Déterminez la loi de X, la loi conjointe du couple (X,Y) et déduisez-en la loi de Y.

Remarque. La loi d'une variable aléatoire ne peut pas dépendre d'une autre variable aléatoire! Écrire par exemple que $Y(\Omega) = [\![X,n]\!]$ dans l'exercice précédent est un non-sens, car X n'est pas un nombre, mais une variable aléatoire (*i.e.* une fonction!).

Lois conditionnelles associées à un couple de variables aléatoires 5.3

Définition. Soit X, Y deux variables aléatoires sur un espace probabilisé fini (Ω, \mathbb{P}) .

Pour tout $y \in Y(\Omega)$ tel que $\mathbb{P}(Y=y) \neq 0$, la loi de X sachant $\{Y=y\}$ est la loi de X dans l'espace probabilisé $(\Omega, \mathbb{P}_{\{Y=y\}})$:

pour tout
$$x \in X(\Omega)$$
, $\mathbb{P}_{\{Y=y\}}(X=x) = \frac{\mathbb{P}(X=x,Y=y)}{\mathbb{P}(Y=y)}$

On définit de manière symétrique la loi de Y sachant $\{X = x\}$.

On déduit de toutes les définitions précédentes et de la formule des probabilités totales les relations suivantes :

Proposition 12. Soit X, Y deux variables aléatoires sur un espace probabilisé fini (Ω, \mathbb{P}) .

On suppose que pour tout $(x,y) \in X(\Omega) \times Y(\Omega)$, $\mathbb{P}(X=x) \neq 0$ et $\mathbb{P}(Y=y) \neq 0$.

Alors pour tout $(x,y) \in X(\Omega) \times Y(\Omega)$,

$$\triangleright \mathbb{P}(X=x,Y=y) = \mathbb{P}(Y=y) \times \mathbb{P}_{\{Y=y\}}(X=x) = \mathbb{P}(X=x) \times \mathbb{P}_{\{X=x\}}(Y=y)$$

$$\triangleright \mathbb{P}(X=x) = \sum_{y \in Y(\Omega)} \mathbb{P}(Y=y) \times \mathbb{P}_{\{Y=y\}}(X=x)$$

$$\mathbb{P}(X = x) = \sum_{y \in Y(\Omega)} \mathbb{P}(Y = y) \times \mathbb{P}_{\{Y = y\}}(X = x)$$

$$\mathbb{P}(Y = y) = \sum_{x \in X(\Omega)} \mathbb{P}(X = x) \times \mathbb{P}_{\{X = x\}}(Y = y)$$

5.4 Covariance

Définition. Soit X, Y deux v.a.r. sur un espace probabilisé fini (Ω, \mathbb{P}) .

On appelle covariance du couple (X,Y) le nombre $Cov(X,Y) = \mathbb{E}\left((X - \mathbb{E}(X)).(Y - \mathbb{E}(Y))\right)$.

Comme pour la variance, on a une expression plus simple.

Proposition 13. Avec les mêmes hypothèses, $Cov(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$.

L'application Cov a des propriétés classiques de bilinéarité.

Proposition 14. Cov est une application bilinéaire.

De plus, pour tout couple de v.a.r. (X,Y), $\mathbb{V}(X+Y) = \mathbb{V}(X) + \mathbb{V}(Y) + 2\operatorname{Cov}(X,Y)$

6 Indépendance de variables aléatoires

6.1Généralités

Définition. Soit X, Y deux variables aléatoires sur un espace probabilisé fini (Ω, \mathbb{P}) .

On dit que X et Y sont indépendantes quand pour toute partie A de $X(\Omega)$ et toute partie B de $Y(\Omega)$, les événements $\{X \in A\}$ et $\{Y \in B\}$ sont indépendants,

c'est-à-dire quand $\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A) \times \mathbb{P}(Y \in B)$.

Dans ce cas, on note $X \perp \!\!\! \perp Y$ pour signaler que X et Y sont indépendantes.

On peut se restreindre aux événements des s.c.e. associés à X et Y.

Proposition 15. Soit X, Y deux variables aléatoires sur un espace probabilisé fini (Ω, \mathbb{P}) .

X et Y sont indépendantes si et seulement si pour toute valeur $(x,y) \in X(\Omega) \times Y(\Omega)$, les événements $\{X = x\}$ et $\{Y = y\}$ sont indépendants, c'est-à-dire si

$$\mathbb{P}(X = x, Y = y) = \mathbb{P}(X = x) \times \mathbb{P}(Y = y)$$

Remarque. En général, la connaissance des lois marginales de (X, Y) ne permet pas de retrouver la loi conjointe de (X, Y).

Dans le cas où les variables aléatoires X et Y sont indépendantes, c'est possible : il suffit de faire le produit « cartésien » des lois comme ci-dessus.

Donc pour montrer que deux variables X et Y ne sont pas indépendantes, il suffit de trouver deux valeurs x, y de X, Y resp. telles que $\mathbb{P}(X = x, Y = y) \neq \mathbb{P}(X = x) \times \mathbb{P}(Y = y)$.

On a un résultat sur les composées de variable indépendantes.

Proposition 16. Soit X, Y deux variables aléatoires sur un espace probabilisé fini (Ω, \mathbb{P}) .

Si X et Y sont indépendantes, alors pour toute fonction f définie sur $X(\Omega)$ et toute fonction g définie sur $Y(\Omega)$, les variables aléatoires f(X) et g(Y) sont indépendantes.

6.2 Espérance et indépendance

On a un résultat remarquable sur les espérances de v.a.r. indépendantes.

Proposition 17. Soit X, Y deux variables aléatoires sur un espace probabilisé fini (Ω, \mathbb{P}) .

Si X et Y sont indépendantes, alors

$$\triangleright \mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$$

$$\triangleright \operatorname{Cov}(X,Y) = 0$$

$$\triangleright \mathbb{V}(X+Y) = \mathbb{V}(X) + \mathbb{V}(Y).$$

Remarque. La réciproque est fausse.

Deux v.a.r. de covariance nulle sont dites « non corrélées », mais c'est un renseignement très faible sur les variables, à la différence de l'indépendance, qui est une contrainte extrêmement forte.

6.3 Généralisation

Définition. Soit X_1, \ldots, X_n n variables aléatoires sur un espace probabilisé fini (Ω, \mathbb{P}) .

On dit que les variables aléatoires X_1,\ldots,X_n sont mutuellement indépendantes quand pour toutes parties A_1,\ldots,A_n de $X_1(\Omega),\ldots,X_n(\Omega)$, les événements $\{X_i\in A_i\}$ sont indépendants, c'est-à-dire quand pour

toute partie
$$J$$
 de $[1, n]$, $\mathbb{P}\left(\bigcap_{j \in J} \{X_j \in A_j\}\right) = \prod_{j \in J} \mathbb{P}(X_j \in A_j)$.

On retrouve la même caractérisation à l'aide des événements des s.c.e. associés au différentes variables aléatoire.

Proposition 18. Soit X_1, \ldots, X_n n variables aléatoires sur un espace probabilisé fini (Ω, \mathbb{P}) .

Les variables aléatoires X_1, \ldots, X_n sont mutuellement indépendantes quand

pour tout $(x_1, \ldots, x_n) \in X_1(\Omega) \times \ldots \times X_n(\Omega)$, les événements $\{X_i = x_i\}$ sont indépendants, c'est-à-dire

quand pour toute partie
$$J$$
 de $\llbracket 1, n \rrbracket$, $\mathbb{P}\left(\bigcap_{j \in J} \{X_j = x_j\}\right) = \prod_{j \in J} \mathbb{P}(X_j = x_j)$.

Et en fait, on peut faire plus simple cette fois-ci!

Proposition 19. Soit X_1, \ldots, X_n n variables aléatoires sur un espace probabilisé fini (Ω, \mathbb{P}) .

Les variables aléatoires X_1, \ldots, X_n sont mutuellement indépendantes quand

pour tout
$$(x_1, ..., x_n) \in X_1(\Omega) \times ... \times X_n(\Omega)$$
, $\mathbb{P}\left(\bigcap_{j=1}^n \{X_j = x_j\}\right) = \prod_{j=1}^n \mathbb{P}(X_j = x_j)$.

Enfin, un petit lemme classique : le lemme des coalitions.

```
Proposition 20. Soit X_1, ..., X_n n variables aléatoires sur un espace probabilisé fini (\Omega, \mathbb{P}).
Soit p \in [1, n-1] et f une fonction de \mathbb{R}^p dans \mathbb{R}, g une fonction de \mathbb{R}^{n-p} dans \mathbb{R}.
Si les variables aléatoires X_1, ..., X_n sont mutuellement indépendantes, alors les deux v.a.r. f(X_1, ..., X_p) et g(X_{p+1}, ..., X_n) sont indépendantes.
```

On en déduit la généralisation du résultat sur les variances.

```
Proposition 21. Soit X_1, \ldots, X_n n variables aléatoires sur un espace probabilisé fini (\Omega, \mathbb{P}).
Si les variables aléatoires X_1, \ldots, X_n sont mutuellement indépendantes, alors \mathbb{V}(X_1 + \ldots + X_n) = \mathbb{V}(X_1) + \ldots + \mathbb{V}(X_n).
```

6.4 Somme de variables de Bernoulli indépendantes

Proposition 22. Soit X_1, \ldots, X_n n variables aléatoires sur un espace probabilisé fini (Ω, \mathbb{P}) . Si ces n variables aléatoires sont mutuellement indépendantes et suivent la même loi de Bernoulli de paramètre p, alors la somme $X_1 + \ldots + X_n$ suit la loi binomiale de paramètre (n, p).