Problème 1

Pour tout $x \ge 0$, on pose $f(x) = \int_0^1 \frac{e^t}{tx+1} dt$.

Partie 1 - Propriétés de f

Question 1) Justifiez que pour tout $x \ge 0$, f(x) existe.

Question 2) Montrez que f est positive et décroissante sur \mathbb{R}_+ . Que peut-on en déduire à propos de f en $+\infty$?

Question 3) Montrez que pour tout x > 0, $f(x) \le e^{\frac{\ln(1+x)}{x}}$. Déduisez-en la limite de f en $+\infty$

Question 4) Montrez que f est lipschitzienne sur \mathbb{R}_+ .

Partie $\mathbf 2$ - Dérivabilité de f et équation différentielle

Question 1) Pour $x \ge 0$, soit $g(x) = -\int_0^1 \frac{t e^t}{(tx+1)^2} dt$.

- a) Montrez que pour tout $(x,y) \in \mathbb{R}^2_+$, si $x \neq y$ alors $\left| \frac{f(x) f(y)}{x y} g(y) \right| \leqslant e|x y|$.
- b) Justifiez que f est dérivable sur \mathbb{R}_+ et précisez sa fonction dérivée.

Question 2) Donnez l'allure de la courbe de f.

Question 3) Pour $x \ge 0$, on pose $h(x) = \int_0^1 \frac{e^t}{(tx+1)^2} dt$.

- a) Montrez que $xh(x) = -\frac{e}{x+1} + 1 + f(x)$. Exprimez f(x) h(x) en fonction de g(x).
- b) Montrez que f est solution de l'équation différentielle (E): $x^2y' + (x-1)y = 1 \frac{e}{x+1}$.

Question 4) Résolvez l'équation différentielle (E) sur \mathbb{R}_{+}^{*} .

Partie 3 - Équation
$$f(x) = x$$

Question 1) Montrez que pour tout $t \in [0,1], 1 \leqslant \frac{e^t}{t+1} \leqslant 1 + (\frac{e}{2} - 1)t$. Déduisez-en que $1 \leqslant f(1) \leqslant \frac{6}{5}$.

On admettra l'inégalité suivante : $1 \le f\left(\frac{6}{5}\right)$

Question 2) Montrez que l'équation f(x) = x a une unique solution qu'on note a et que $a \in \left[1, \frac{6}{5}\right]$.

Question 3) Montrez que $f'(1) = 1 - \frac{e}{2}$, puis que f est $\frac{1}{2}$ -lipschitzienne sur le segment $\left[1, \frac{6}{5}\right]$.

Question 4) On pose $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$.

- a) Justifiez que pour tout $n \in \mathbb{N}$, $u_n \in \left[1, \frac{6}{5}\right]$, puis que u converge vers a.
- b) Étant donné un réel $\varepsilon > 0$, déterminez un rang N tel que u_N soit une valeur approchée de a à ε près.