Exercice

Soit $n \in \mathbb{N}^*$, $a \in \mathbb{C}$, J la matrice de $\mathscr{M}_n(\mathbb{C})$ dont tous les coefficients valent 1, K celle dont tous les coefficients valent 0 sauf celui en bas à droite qui vaut 1.

Calculez $\det(J - I_n + aK)$ en fonction de n et a.

Exercice

Soit $n \in \mathbb{N}^*$. La transposition $\varphi : M \mapsto {}^tM$ est un endomorphisme de $\mathscr{M}_n(\mathbb{C})$. Calculez $\operatorname{tr}(\varphi)$ et $\operatorname{det}(\varphi)$.

Problème 1 - Déterminants de Cauchy et de Hilbert

Soit $n \in \mathbb{N}^*$, $a_1, \ldots, a_n, b_1, \ldots, b_n$ 2n complexes tels que pour tout $(i, j) \in [1, n]^2$, $a_i + b_i \neq 0$: on pose alors $c_{ij} = \frac{1}{a_i + b_j}$.

Pour $k \in [1, n]$, on note $D_k = \det((c_{ij})_{1 \leq i, j \leq k})$.

Question 1) Que vaut D_n si les scalaires $(a_i)_{1 \leq i \leq n}$ ne sont pas deux à deux distincts? Même question avec les scalaires $(b_i)_{1 \leq i \leq n}$.

Dans toute la suite, on suppose que les scalaires $(a_i)_{1 \leqslant i \leqslant n}$ sont tous distincts ainsi que les scalaires $(b_i)_{1 \leqslant i \leqslant n}$.

Soit F la fraction rationnelle $F = \begin{vmatrix} c_{11} & \dots & c_{1,n-1} & \frac{1}{a_1+X} \\ c_{21} & \dots & c_{2,n-1} & \frac{1}{a_2+X} \\ \vdots & & \vdots & \vdots \\ c_{n1} & \dots & c_{n,n-1} & \frac{1}{a_n+X} \end{vmatrix}$

Question 2) Déterminez les pôles de F et donnez la partie polaire associée au pôle $-a_n$ en fonction de D_{n-1} .

Question 3) On écrit sous forme irréductible $F = \frac{P}{Q}$ où P, Q sont deux polynômes, Q unitaire. Déterminez Q et justifiez qu'il existe $\lambda \in \mathbb{C}$ tel que $P = \lambda \prod_{k=1}^{n-1} (X - b_k)$.

Question 4) Donnez une expression de λ en fonction de $D_{n-1}, a_1, \ldots, a_n$ et b_1, \ldots, b_{n-1} .

Question 5) En exprimant D_n en fonction de F, donnez une relation de récurrence entre D_n et D_{n-1} .

Question 6) Montrez que pour tout $n \in \mathbb{N}^*$, $D_n = \prod_{1 \le i < j \le n} \frac{(a_j - a_i)(b_j - b_i)}{(a_j + b_i)(b_j + a_i)} \prod_{i=1}^n \frac{1}{a_i + b_i} = \frac{\prod_{1 \le i < j \le n} (a_j - a_i)(b_j - b_i)}{\prod_{1 \le i, j \le n} (a_i + b_j)}$.

Question 7) Donnez la valeur du déterminant $H_n = \begin{vmatrix} 1 & \frac{1}{2} & \dots & \frac{1}{n} \\ \frac{1}{2} & \frac{1}{3} & \dots & \frac{1}{n+1} \\ \vdots & \vdots & & \vdots \\ \frac{1}{n} & \frac{1}{n+1} & \dots & \frac{1}{2n-1} \end{vmatrix}$.

Devoir non surveillé 15 - Corrigé

Exercice

On effectue les opérations suivantes :

- d'abord, pour i variant de 1 à n-1, $C_i \leftarrow C_i C_n$, ce qui ne change pas le déterminant;
- puis $C_n \leftarrow \sum_{k=1}^n C_k$, ce qui ne change pas le déterminant non plus;
- on obtient une matrice triangulaire inférieure dont la diagonale contient n-1 fois le nombre -1 et en bas à droite, le nombre a + (n-1)(1-a) = n-1 (n-2)a.

Donc $\det(J - I_n + aK) = (-1)^{n-1} (n - 1 - (n-2)a).$

Exercice

L'endomorphisme φ vérifie la relation $\varphi \circ \varphi = \mathrm{Id}_{\mathscr{M}_n(\mathbb{C})}$ donc φ est une symétrie de $\mathscr{M}_n(\mathbb{C})$.

Soit E l'ensemble des vecteurs de $\mathscr{M}_n(\mathbb{C})$ invariants par φ : il s'agit du sous-espace $\mathscr{S}_n(\mathbb{C})$ qui contient les matrices symétriques.

Soit F l'ensemble des vecteurs de $\mathscr{M}_n(\mathbb{C})$ anti-invariants par φ : il s'agit du sous-espace $\mathscr{A}_n(\mathbb{C})$ qui contient les matrices antisymétriques.

Comme φ est une symétrie, on sait que $E \oplus F = \mathscr{M}_n(\mathbb{C})$ (voir cours) donc si on choisit une base de E et une base de F et qu'on les réunit, on obtient une base de $\mathscr{M}_n(\mathbb{C})$ dans laquelle la matrice de φ est diagonale, avec dim E fois le nombre 1 et dim F fois le nombre -1 sur la diagonale.

Donc
$$\operatorname{tr} \varphi = \dim E \times 1 + \dim F \times (-1) = \frac{n(n+1)}{2} - \frac{n(n-1)}{2} = n \text{ et } \det \varphi = (1)^{\dim E} \times (-1)^{\dim F} = (-1)^{n(n-1)/2}.$$

Problème 1

Question 1) Si les scalaires $(a_i)_{1 \leqslant i \leqslant n}$ ne sont pas deux à deux distincts, alors il existe deux indices i et j tels que $i \neq j$ et $a_i = a_j$. Alors le déterminant D_n contient 2 lignes identiques donc il est nul.

De même, si les scalaires $(b_i)_{1 \leq i \leq n}$ ne sont pas deux à deux distincts, alors le déterminant D_n contient 2 colonnes identiques donc il est nul.

Question 2) On développe le déterminant qui définit F par rapport à la dernière colonne, on obtient $F = \sum_{i=1}^{n} \frac{c_i}{a_i + X}$ où

 c_1, \ldots, c_n sont n scalaires. Donc les pôles de F sont les nombres $-a_1, \ldots, -a_n$ (en toute rigueur, il faudrait prouver que tous les coefficients c_i sont non nuls).

La partie polaire associée à $-a_n$ est le coefficient $c_n = (-1)^{n+n}D_{n-1} = D_{n-1}$.

Question 3) On met la somme précédente au même dénominateur, on obtient $Q = \prod_{i=1}^{n} (X + a_i)$.

Pour tout $k \in [1, n-1]$, on calcule $F(b_k)$: on obtient un déterminant qui contient deux colonnes identiques (la k-ème et la n-ème) donc $F(b_k) = 0$ ou encore $P(b_k) = 0$: le polynôme P a donc pour racines les nombres b_1, \ldots, b_{n-1} .

Comme $F = \sum_{i=1}^{n} \frac{c_i}{a_i + X}$, on constate que deg F < 0 comme somme de fractions rationnelles de degrés strictement négatifs donc deg $P < \deg Q = n$.

 $\deg P\leqslant n-1$ et le polynôme P a donc pour racines les nombres distincts b_1,\ldots,b_{n-1} donc $\deg P=n-1$ et il existe donc un nombre λ tel que $P=\lambda\prod_{k=1}^{n-1}(X-b_k)$.

Question 4) On écrit $F = \frac{P}{Q} = \frac{D_{n-1}}{X + a_n} + G$ où G est une fraction dont $-a_n$ n'est pas un pôle.

Donc
$$D_{n-1} + (X + a_n)G = \frac{(X + a_n)P}{Q} = \frac{\lambda \prod_{k=1}^{n-1} (X - b_k)}{\prod_{i=1}^{n-1} (X + a_i)}$$
.

On évalue en
$$-a_n: D_{n-1} = \lambda \frac{\prod_{k=1}^{n-1} (-a_n - b_k)}{\prod_{i=1}^{n-1} (-a_n + a_i)} = \lambda \frac{\prod_{k=1}^{n-1} (a_n + b_k)}{\prod_{i=1}^{n-1} (a_n - a_i)}$$

Donc
$$\lambda = D_{n-1} \frac{\prod_{i=1}^{n-1} (a_n - a_i)}{\prod_{i=1}^{n-1} (a_n + b_i)}$$

Question 5)
$$D_n = F(b_n) = D_{n-1} \frac{\prod_{i=1}^{n-1} (a_n - a_i)}{\prod_{i=1}^{n-1} (a_n + b_i)} \frac{P(b_n)}{Q(b_n)} = D_{n-1} \frac{\prod_{i=1}^{n-1} (a_n - a_i)}{\prod_{i=1}^{n-1} (a_n + b_i)} \frac{\prod_{i=1}^{n-1} (b_n - b_i)}{\prod_{i=1}^{n} (b_n + a_i)}$$

Question 6) Soit
$$\mathscr{P}(n)$$
 la proposition « $D_n = \prod_{1 \le i < j \le n} \frac{(a_j - a_i)(b_j - b_i)}{(a_j + b_i)(b_j + a_i)} \prod_{i=1}^n \frac{1}{a_i + b_i}$ ».

$$\mathscr{P}(1)$$
 est vraie : $D_1 = \frac{1}{a_1 + b_1}$.

Si
$$\mathscr{P}(n-1)$$
 est vraie, alors $D_{n-1} = \prod_{1 \le i < j \le n-1} \frac{(a_j - a_i)(b_j - b_i)}{(a_j + b_i)(b_j + a_i)} \prod_{i=1}^{n-1} \frac{1}{a_i + b_i}$

$$\text{donc d'après la relation précédente, } D_n = \frac{\prod_{i=1}^{n-1}(a_n-a_i)}{\prod_{i=1}^{n-1}(a_n+b_i)} \frac{\prod_{i=1}^{n-1}(b_n-b_i)}{\prod_{i=1}^{n}(b_n+a_i)} \\ \times \prod_{1 \leq i < j \leq n-1} \frac{(a_j-a_i)(b_j-b_i)}{(a_j+b_i)(b_j+a_i)} \prod_{i=1}^{n-1} \frac{1}{a_i+b_i} \prod_{i=1}^{n-1}$$

On regroupe les facteurs convenablement :

$$D_n = \frac{\prod_{i=1}^{n-1}(a_n - a_i) \times \prod_{1 \leqslant i < j \leqslant n-1}(a_j - a_i)}{\prod_{i=1}^{n-1}(a_n + b_i) \times \prod_{1 \leqslant i < j \leqslant n-1}(a_j + b_i)} \times \frac{\prod_{i=1}^{n-1}(b_n - b_i) \times \prod_{1 \leqslant i < j \leqslant n-1}(b_j - b_i)}{\prod_{i=1}^{n-1}(b_n + a_i) \times \prod_{1 \leqslant i < j \leqslant n-1}(b_j + a_i)} \times \frac{1}{a_n + b_n} \times \prod_{i=1}^{n-1} \frac{1}{a_i + b_i}$$

$$D_n = \frac{\prod_{1 \le i < j \le n} (a_j - a_i)}{\prod_{1 \le i < j \le n} (a_j + b_i)} \times \frac{\prod_{1 \le i < j \le n} (b_j - b_i)}{\prod_{1 \le i < j \le n} (b_j + a_i)} \times \prod_{i=1}^n \frac{1}{a_i + b_i}$$

Donc $\mathcal{P}(n)$ est vraie.

D'après le principe de récurrence, pour tout $n \in \mathbb{N}^*$, $\mathscr{P}(n)$ est vraie.

Question 7) On applique le résultat du calcul précédent dans le cas particulier : $a_i = i - 1$ et $b_i = i$.

$$H_n = \prod_{1 \le i < j \le n} \frac{(j-i)^2}{(j+i-1)^2} \prod_{i=1}^n \frac{1}{2i-1} = \left(\prod_{j=2}^n \prod_{i=1}^{j-1} \frac{j-i}{j+i-1} \right)^2 \prod_{i=1}^n \frac{1}{2i-1}$$

$$H_n = \left(\prod_{j=2}^n \frac{(j-1)!}{j \times (j+1) \times \ldots \times (2j-2)}\right)^2 \prod_{i=1}^n \frac{1}{2i-1} = \left(\prod_{k=1}^{n-1} \frac{k!}{\frac{(2k)!}{k!}}\right)^2 \prod_{i=1}^n \frac{1}{2i-1}$$

$$H_n = \left(\prod_{k=1}^{n-1} \frac{k!^2}{(2k)!}\right)^2 \prod_{i=1}^n \frac{1}{2i-1}$$

$$H_n = \left(\prod_{k=1}^{n-1} \frac{k!^2}{(2k)!}\right)^2 \frac{2^n n!}{(2n)!}.$$