Groupe symétrique

Dans tout ce chapitre, n désigne un entier naturel non nul.

1 Généralités

1.1 Définition générale

Définition. Soit E un ensemble non vide.

On appelle permutation de E toute bijection de E dans lui-même.

L'ensemble des permutations de E est noté $\mathscr{S}(E)$ ou $\mathfrak{S}(E)$.

Grâce aux propriétés classiques sur les bijections, il est facile de prouver le résultat suivant.

Proposition 1. L'ensemble $(\mathscr{S}(E), \circ)$ est un groupe, en général non commutatif dès que E contient au moins 3 éléments.

 $\mathcal{S}(E)$ est appelé le groupe symétrique de E.

Définition. Si f est une permutation de E, on appelle point fixe de f tout élément x de E tel que f(x) = x.

On appelle support de f l'ensemble des éléments de E qui ne sont pas fixés par f, noté supp(f).

$$\operatorname{supp}(f) = \{ x \in E / f(x) \neq x \}$$

Le support de f est finalement le véritable ensemble sur lequel agit f: en dehors du support, f ne fait rien et f induit une application de $\operatorname{supp}(f)$ dans lui-même.

Lemme 1. Soit f une permutation de E. Si $x \in \text{supp}(f)$, alors $f(x) \in \text{supp}(f)$.

On en déduit une condition suffisante pour que deux permutations commutent.

Proposition 2. Soit f, g deux permutations de E. Si $\operatorname{supp}(f) \cap \operatorname{supp}(g) = \emptyset$, alors $f \circ g = g \circ f$.

1.2 Ensemble \mathscr{S}_n

Dans le cas où E est l'ensemble fini $E_n = [\![1,n]\!]$, on note plus simplement \mathscr{S}_n l'ensemble $\mathscr{S}([\![1,n]\!])$. À partir de maintenant, on n'étudie plus que le groupe \mathscr{S}_n , groupe symétrique d'indice n.

Si
$$f \in \mathscr{S}_n$$
, on note f comme un tableau à deux lignes $\begin{pmatrix} 1 & 2 & \dots & n \\ f(1) & f(2) & \dots, & f(n) \end{pmatrix}$.

Exercices:

Proposition 3. \mathcal{S}_n est un ensemble fini de cardinal

En général, les permutations de [1, n] sont notées à l'aide de lettres grecques minuscules $\sigma, \tau, \rho, \ldots$ Souvent on ne note pas le symbole de composition des fonctions : la composée de deux permutations σ et τ est notée simplement $\sigma\tau$ et est appelée le produit des deux permutations.

La permutation identité est souvent notée I ou e.

2 Transpositions

Définition. Une transposition de \mathcal{S}_n est une permutation qui a n-2 points fixes, autrement dit qui échange deux entiers et ne change pas les autres.

Si τ est la permutation qui échange i et j, on la note $\tau = (i, j)$ ou $\tau = (j, i)$.

Proposition 4. Toute transposition est involutive : si τ est une transposition, alors $\tau^{-1} = \tau$, ou ce qui revient au même $\tau^2 = e$.

Le résultat principal concernant les transpositions est le théorème de décomposition en produits.

Théorème 1. Toute permutation de \mathscr{S}_n peut s'écrire comme produit de transpositions.

On peut être plus précis : si σ est une permutation de \mathscr{S}_n , alors σ est un produit d'au plus n-1 transpositions.

Ce résultat prouve que tout ce qui peut être expliqué à l'aide de permutations peut l'être aussi à l'aide uniquement de transpositions.

Mais ce résultat a un léger défaut : il n'y a pas unicité d'une telle écriture.

Exercices:

1) Dans le cas où n=6, soit $\sigma=\begin{pmatrix}1&2&3&4&5&6\\3&5&4&1&6&2\end{pmatrix}$. Écrivez de deux façons σ comme produits de transpositions.

3 Cycles

La notion de cycle généralise celle de transposition.

Définition. Soit $\sigma \in \mathscr{S}_n$. On dit que σ est un cycle de longueur k quand il existe a_1, \ldots, a_k k éléments de E_n tels que

$$\sigma(a_1) = a_2, \ \sigma(a_2) = a_3, \ \dots, \ \sigma(a_{k-1}) = a_k \ \text{et} \ \sigma(a_k) = a_1$$

les autres éléments restant inchangés.

On note alors $\sigma = (a_1, \ldots, a_k)$, mais aussi $\sigma = (a_2, \ldots, a_k, a_1)$ ou ...

Avec cette définition, on constate que les transpositions sont les cycles de longueur 2.

Proposition 5. Si σ est un cycle de longueur k, alors $\sigma^k = e$, donc $\sigma^{-1} = \sigma^{k-1}$.

On a de même un théorème de décomposition en cycles, mais plus précis.

Théorème 2. Toute permutation de \mathcal{S}_n peut s'écrire comme un produit commutatif de cycles à supports deux à deux disjoints. Une telle décomposition est unique à l'ordre des facteurs près.

Exercices:

1) Dans le cas où n=8, on pose $\sigma=\begin{pmatrix}1&2&3&4&5&6&7&8\\5&1&2&6&8&7&4&3\end{pmatrix}$. Donnez la décomposition de σ en produit de cycles disjoints.

2

4 Signature d'une permutation

On note $\mathscr{P}_2(n)$ l'ensemble des paires (i.e. 2-combinaisons) de l'ensemble [1, n].

Définition. Soit $\sigma \in \mathscr{S}_n$. On appelle signature de σ , notée $\varepsilon(\sigma)$, le nombre $\prod_{\{i,j\}\in\mathscr{P}_2(n)} \frac{\sigma(j) - \sigma(i)}{j-i}.$

On peut réécrire la signature sous la forme $\prod_{1 \le i \le j \le n} \frac{\sigma(j) - \sigma(i)}{j - i}$

Théorème 3.

- $\triangleright Pour \ tout \ \sigma \in \mathscr{S}_n, \ \varepsilon(\sigma) \in \{-1, +1\}.$
- $ightharpoonup Pour tout (\sigma, \tau) \in \mathscr{S}_n^2, \ \varepsilon(\sigma\tau) = \varepsilon(\sigma)\varepsilon(\tau).$
- $\triangleright \varepsilon(e) = 1.$
- $\triangleright Pour tout \sigma \in \mathscr{S}_n, \ \varepsilon(\sigma^{-1}) = \varepsilon(\sigma).$

Proposition 6. La signature d'une transposition est -1.

Par conséquent, la parité du nombre de transpositions dans la décomposition en produit de transpositions ne dépend que de la permutation.

Exercices:

1) Quelle est la signature d'un cycle de longueur k?

Les permutations σ telles que $\varepsilon(\sigma)=1$ sont appelées les permutations paires, les autres sont les permutations impaires.

Proposition 7. On note \mathcal{A}_n l'ensemble des permutations paires.

Alors \mathscr{A}_n est un sous-groupe de \mathscr{S}_n , appelé groupe alterné d'indice n. Il est de cardinal $\frac{n!}{2}$.

Proposition 8. Différentes façons de calculer la signature d'une permutation σ :

- $\triangleright \varepsilon(\sigma) = (-1)^T$ où T est le nombre de facteurs dans une écriture de σ en produit de transpositions;
- $> \varepsilon(\sigma) = \prod_{i=1}^{k} (-1)^{\ell_i 1} \text{ où } \ell_1, \dots, \ell_k \text{ sont les longueurs des cycles de longueur au moins 2}$ dans l'écriture de σ en produit de cycles disjoints;
- $ho \ \varepsilon(\sigma) = (-1)^{n-c}$ où c est le nombre de cycles (y compris ceux de longueur 1) de l'écriture de σ en produit de cycles disjoints;
- $\triangleright \varepsilon(\sigma) = (-1)^p$ où p est le nombre de cycles de longueur paire de l'écriture de σ en produit de cycles disjoints;
- $\triangleright \varepsilon(\sigma) = (-1)^N$ où N est le nombre d'inversions de σ , une inversion étant un couple (i,j) de [1,n] tel que i < j et $\sigma(i) > \sigma(j)$.

3