ESPACES VECTORIELS 3

- * Exercice proche du cours ** Exercice de difficulté normale *** Exercice difficile (voire très difficile)
- *1) Exemples de s.e.v. supplémentaires
 - a) Dans le \mathbb{R} -e.v. \mathbb{R}^3 , on pose $F = \{(x, y, z) \in \mathbb{R}^3 \ / \ 3x z = 0\}$ et G le sous e.v. engendré par le vecteur u = (1, 2, -1). Montrez que F et G sont supplémentaires dans \mathbb{R}^3 .
 - b) Montrez que $K_1[X]$ et vect $(1 + X + X^2)$ sont supplémentaires dans $K_2[X]$.
 - c) Dans le \mathbb{R} -e.v. \mathbb{R}^4 , on pose $F = \{(x, y, z, t) \in \mathbb{R}^4 \ / \ 5x 2y + z = 0 \text{ et } 8x 3y + t = 0\}$ et G le sous e.v. engendré par le vecteur u = (-2, 2, 0, 1) et v = (0, 0, 1, 0). Montrez que F et G sont supplémentaires dans \mathbb{R}^4 .
- **2) Soit $E = \mathscr{F}(\mathbb{R}, \mathbb{R})$. Soit $G = \{ f \in E \mid f(1) = 0 \}$ et $H = \{ x \mapsto ax \mid a \in \mathbb{R} \}$. Montrez que $E = G \oplus H$.
- **3) Soit E l'ensemble des fonctions dont la courbe possède une asymptote en $+\infty$.
 - a) Montrez que E est un \mathbb{R} -e.v.
 - b) Montrez que E_0 , ensemble des fonctions ayant pour limite 0 en $+\infty$, est un s.e.v. de E et donnez-en un supplémentaire.
- **4) Même exercice avec E l'ensemble des fonctions dont la courbe possède des asymptotes en $+\infty$ et en $-\infty$ et E_0 l'ensemble des fonctions ayant pour limites 0 en $+\infty$ et en $-\infty$.
- **5) Soit $E = \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$ et $n \in \mathbb{N}$. Montrez que l'ensemble F_n des fonctions de E, négligeables en 0 devant la fonction $x \mapsto x^n$, est un s.e.v. de E et donnez-en un supplémentaire.
- **6) Soit a_0, \ldots, a_n n+1 scalaires distincts. Dans K[X], soit F l'ensemble des polynômes ayant pour racines a_0, \ldots, a_n . Montrez que F est un s.e.v. de K[X] et donnez-en un supplémentaire.
- **7) Soit E un K-e.v.
 - a) Soit F, G deux s.e.v. tel que $F \subset G$ et qui possèdent un supplémentaire commun. Montrez que F = G.
 - b) Si on supprime l'hypothèse d'inclusion, est-ce encore vrai?
 - c) Généralisation : soit E_1 , E_2 , E_3 des sous e.v. tels que $\begin{cases} E_1 + E_3 &= E_2 + E_3 \\ E_1 \cap E_3 &= E_2 \cap E_3 \end{cases}$. Montrez que $E_1 = E_2$. $E_1 \subset E_2$
- *8) Soit F, G, H des sous e.v. d'un K-e.v. E. Comparez pour l'inclusion $F \cap (G + H)$ et $F \cap G + F \cap H$, ainsi que $F + (G \cap H)$ et $(F + G) \cap (F + H)$.

Donnez des contre-exemples montrant qu'en général, ces inclusions sont strictes.

- **9) Soit A, B, C trois s.e.v. de E, un K-e.v., tels que $B = (A \cap B) \oplus C$. Montrez que $A + B = A \oplus C$.
- *10) Soit X, Y deux parties d'un K-ev E. Montrez que $\text{vect}(X \cup Y) = \text{vect}(X) + \text{vect}(Y)$.
- *11) Pour $k \in \mathbb{N}$, on note F_k l'ensemble des fonctions $y : \mathbb{R} \to \mathbb{R}$ dérivables telles que y' = ky.
 - a) Montrez que F_k est un \mathbb{R} espace vectoriel.
 - b) Soit $n \in \mathbb{N}$. Montrez que la somme $F_0 + F_1 + ... + F_n$ est directe.
- **12) Soit $E = \mathscr{F}(\mathbb{C}, \mathbb{C})$. Pour $k \in \{0, 1, 2\}$, on pose $E_k = \{f \in E \mid \forall x \in \mathbb{C} \mid f(jx) = j^k f(x)\}$.

Montrez que E_0 , E_1 , E_2 sont trois s.e.v. de E et que $E = E_0 \oplus E_1 \oplus E_2$.